Hi Peter,

Sure, you can do it.

First off, you'll need to lose one of zero's from that 1,250,000,000

If you start off with 125,000,000 it brings it down to a managable range.

125,000,000 / 32000 = 3906.2
125,000,000 / 6200 = 20161.2

Then you have most of the number from the integer portion, and the last digit is in the remainder, in the form of a Modulas. By dividing the (Modulas*10) by the original divisor, you can recover the last digit.
Code:
<font color="#000000"><b>Temp       </b><font color="#008000"><b>VAR  WORD</b></font>
<b>Divisor    </b><font color="#008000"><b>VAR  WORD
</b></font><b>Remainder  </b><font color="#008000"><b>VAR  WORD

</b></font><font color="#0000FF"><b><i>;----[Load a 32-bit constant into PBP registers, Prior to DIV32]--------
</i></b></font><font color="#008000"><b>ASM
</b></font><font color="#000080">PutMulResult macro Const32
    MOVE?CB   low Const32, R2
    MOVE?CB   low (Const32 &gt;&gt; 8), R2 + 1
    MOVE?CB   low (Const32 &gt;&gt; 16), R0
    MOVE?CB   low (Const32 &gt;&gt; 24), R0 + 1
  endm
</font><font color="#008000"><b>ENDASM

</b></font><b>Divisor </b>= <b>6200
</b><font color="#000080">@  PutMulResult   125000000
</font><b>Temp </b>= <font color="#008000"><b>DIV32 </b></font><b>Divisor
Remainder </b>= <b>R2 </b>* <b>10
Remainder </b>= <font color="#008000"><b>DIV32 </b></font><b>Divisor
</b><font color="#008000"><b>LCDOUT  </b></font><font color="#FF0000">&quot;Result=&quot;</font>,<font color="#008000"><b>DEC </b></font><b>Temp</b>,<font color="#008000"><b>DEC1 </b></font><b>Remainder</b>
Result = 201612

HTH,
&nbsp;&nbsp;Darrel