Hi Melanie,
I think your calculations are a bit off. The multiplexed 4-digit display you mention above would only have one digit lighted at a time and so if you were driving each segment at 10-ma while displaying "8888" you would only be drawing 70-ma total current (70-ma while displaying digit 1, 70-ma while displaying digit 2, and so on) and not the 280-ma you mentioned.
You seem to be ignoring "duty cycle" in your explanations. While the "one-at-a-time" method you mention would provide 10-ma total current draw the average current per LED in a 4-digit (28-segment) display would be only 1/28th of 10-ma or approximately 0.357-ma. By comparison, driving each segment of a multiplexed display at 10-ma at a 1/4th duty cycle would provide 2.5-ma average current per LED. Now as you've pointed out, painting "8888" on a 4-digit multiplexed display would cost 70-ma compared to 10-ma with the "one-at-a-time" method but you forgot to mention that the average current per LED is seven times higher which translates into a much brighter display.
Suggesting that a "one-segment-at-a-time" method or design is better than a multiplexed design based solely on the total current used is silly but it did provide me and several associates with a few giggles.
Kind regards, Mike
Bookmarks