IV AKXV

Maxim > App Notes > 1-Wire® Devices Battery Management

Keywords: 1wire, 1-Wire search algorithm, iButton search algorithm, unique 1D, ROM number, network Mar 28, 2002
address

1-Wire Search Algorithm

Abstract: Maxim's 1-Wire® devices each have a 64-bit unique registration number in read-only-memory
(ROM) that is used to address them individually by a 1-Wire master in a 1-Wire network. If the ROM numbers
of the slave devices on the 1-Wire network are not known, then using a search algorithm can discover them.
This document explains the search algorithm in detail and provides an example implementation for rapid
integration. This algorithm is valid for all current and future devices that feature a 1-Wire interface.

Introduction

Maxim's 1-Wire devices each have a 64-bit unique registration number in read-only-memory (ROM) that is used
to address them individually by a 1-Wire master in a 1-Wire network. If the ROM numbers of the slave devices
on the 1-Wire network are not known, then they can be discovered by using a search algorithm. This document
explains the search algorithm in detail and provides an example implementation for rapid integration. This
algorithm is valid for all current and future devices that feature a 1-Wire interface.

MSB G4-Bit "Registration’ ROM Number LSB
2-Bit CRC 45-Bit Serial Number 2-Bit Family Code
M5B LSE |MSE LSB|MSB LSBE

Figure 1. 64-Bit Unique ROM 'Registration' Number.

Search Algorithm

The search algorithm is a binary tree search where branches are followed until a device ROM number, or leaf, is
found. Subsequent searches then take the other branch paths until all of the leaves present are discovered.

The search algorithm begins with the devices on the 1-Wire being reset using the reset and presence pulse
sequence. If this is successful then the 1-byte search command is sent. The search command readies the 1-Wire
devices to begin the search.

There are two types of search commands. The normal search command (FO hex) will perform a search with all
devices participating. The alarm or conditional search command (EC hex) will perform a search with only the
devices that are in some sort of alarm state. This reduces the search pool to quickly respond to devices that
need attention.

Following the search command, the actual search begins with all of the participating devices simultaneously
sending the first bit (least significant) in their ROM number (also called registration number). (See Figure 1.) As
with all 1-Wire communication, the 1-Wire master starts every bit whether it is data to be read or written to the
slave devices. Due to the characteristics of the 1-Wire, when all devices respond at the same time, the result will
be a logical AND of the bits sent. After the devices send the first bit of their ROM number, the master initiates
the next bit and the devices then send the complement of the first bit. From these two bits, information can be
derived about the first bit in the ROM numbers of the participating devices. (See Table 1.)

Page 1 of 18

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/5/ln/en

Table 1. Bit Search Information

Bit (true)|Bit (complement) [Information Known

0 0 There are both Os and 1s in the current bit position of the participating ROM
numbers. This is a discrepancy.

1 There are only Os in the bit of the participating ROM numbers.
There are only 1s in the bit of the participating ROM numbers.
1 No devices participating in search.

According to the search algorithm, the 1-Wire master must then send a bit back to the participating devices. If
the participating device has that bit value, it continues participating. If it does not have the bit value, it goes into
a wait state until the next 1-Wire reset is detected. This 'read two bits' and 'write one bit' pattern is then
repeated for the remaining 63 bits of the ROM number (see Table 2). In this way the search algorithm forces all
but one device to go into this wait state. At the end of one pass, the ROM number of this last device is known.
On subsequent passes of the search, a different path (or branch) is taken to find the other device ROM numbers.
Note that this document refers to the bit position in the ROM number as bit 1 (least significant) to bit 64 (most
significant). This convention was used instead of bit O to bit 63 for convenience to allow initialization of
discrepancy counters to O for later comparisons.

Table 2. 1-Wire Master and Slave Search Sequence

1-Wire reset stimulus Produce presence pulse

Write search command (normal or alarm) Each slave readies for search.

Read 'AND' of bit 1 Each slave sends bit 1 of its ROM number.

Read 'AND' of complement bit 1 Each slave sends complement bit 1 of its ROM number.

Each slave receives the bit written by master, if bit read is not
the same as bit 1 of its ROM number then go into a wait state.

Read 'AND' of bit 64 Each slave sends bit 64 of its ROM number.
Read 'AND' of complement bit 64 Each slave sends complement bit 64 of its ROM number.

Write bit 1 direction (according to algorithm)

. Each slave receives the bit written by master, if bit read is not
Wit (orle 4 elieeten (@egairling i Eligeritnm) the same as bit 64 of its ROM number then go into a wait state.
On examination of Table 1, it is obvious that if all of the participating devices have the same value in a bit
position then there is only one choice for the branch path to be taken. The condition where no devices are
participating is an atypical situation that may arise if the device being discovered is removed from the 1- Wire
during the search. If this situation arises then the search should be terminated and a new search could be done
starting with a 1-Wire reset. The condition where there are both Os and 1s in the bit position is called a
discrepancy and is the key to finding devices in the subsequent searches. The search algorithm specifies that on
the first pass, when there is a discrepancy (bit/complement = 0/0), the '0' path is taken. Note that this is
arbitrary for this particular algorithm. Another algorithm could be devised to use the '1' path first. The bit
position for the last discrepancy is recorded for use in the next search. Table 3 describes the paths that are
taken on subsequent searches when a discrepancy occurs.

Table 3. Search Path Direction

Search Bit Position vs Last Discrepancy|Path Taken

take the '1' path

< take the same path as last time (from last ROM number found)
> take the '0' path

The search algorithm also keeps track of the last discrepancy that occurs within the first eight bits of the
algorithm. The first eight bits of the 64-bit registration number is a family code. As a result, the devices
discovered during the search are grouped into family types. The last discrepancy within that family code can be
used to selectively skip whole groups of 1-Wire devices. See the description of ADVANCED SEARCH VARIATIONS
for doing selective searches. The 64-bit ROM number also contains an 8-bit cyclic-redundancy-check (CRC). This

Page 2 of 18

CRC value is verified to ensure that only correct ROM numbers are discovered. See Figure 1 for the layout of the
ROM number.

The DS2480B Serial to 1-Wire Line Driver performs some of this same search algorithm in hardware. Please see
the DS2480B data sheet and Application Note 192, Using the DS2480B Serial 1-Wire Line Driver for details. The

DS2490 USB to 1-Wire Bridge performs the entire search in hardware.

Figure 2 shows a flow chart of the search sequence. Note the Reference side bar that explains the terms used in
the flow chart. These terms are also used in the source code appendix to this document.

Page 3 of 18

http://www.maxim-ic.com/an192

Ferform a
1-ire Resat

FPresence
Detected?

Set id_bit_number to 1,
Set last_zero o

L 2

Send search command
{0F or EC hex)

Reference

cmp_id_bit - the complement of the id_bit.
This bit is the AND of tha complameant
of all of the id_bit_number bits of the
devices that are still paricipating in the
search.

id_bit - the first bit read in a it search
sequence. This bit is the AMND of all of
the id_bit nurmber bita of the devices
that are still participating in the search.

id_bit_mumbser - the RO bit numier 1 to
&4 currently being searched

LastDeviceFlag - flag to indicate previous
search was the last device.

LastDizcrepancy - bit indewx that identifies

Read bit (ld_bit) and
complemeant [D bt
temp_id_bit) from 1-%¥Vire

from which kit the (next) search

discrepancy check should start
LastFamilyDiscrepancy - bit index that
identifies the LastDiscrepancy within the
first &-bit tarmily code of ROM number,
lagt_zers - bit position of the last zers
written where there was a discrepancy.
ROM_MNO - B-byte buffer that contains the
current ROM registraticon numiser
discoverad
search_direction - bit value indicating the
direction of the asarch. All devices with
this bit stay In the search and the rest

id_bit_number =
LastDiscrepancy

Set search_direction
Bt te id_bit

Bt to 1

id_bit_number =
LastDiscrepancy
7

o inbo @ walt state Tor a 1-Wire reget,

Set search_direction
bt 1y 0

Set id_bit_number bit
in ROM_MNO to
search_direction and

send 1o 1-Wire H

¥
InGresment
id_bit_number

id_bit-
numbser =
B4

Yas

t_ Set search_direction
kit to id_bit_mumber

Set Ias‘t_zer'u bitin ROM NO
o current =
id_bit_number
Mo I$ ves | Set LastFamily-
last_zero Discrepancy 1o
< g7 last_zero

Set LastDiscrepancy
o last_zero

et
LastDeviceFlag

v

O

Figure 2. Search Flow.

Page 4 of 18

Resetsearch
LastDiscrepancy =0) Set return value fo
LastFamilyDiscrepancy = 0 FALZE

LastDeviceFlag = 0

¥

Set return value to
TRUE

Figure 2. Search Flow part II.

There are two basic types of operations that can be performed by using the search algorithm by manipulating
the LastDiscrepancy, LastFamilyDiscrepancy, LastDeviceFlag, and ROM_NO register values (see Table 4). These
operations concern basic discovery of the ROM numbers of 1-Wire devices.

First

The 'FIRST' operation is to search on the 1-Wire for the first device. This is performed by setting
LastDiscrepancy, LastFamilyDiscrepancy, and LastDeviceFlag to zero and then doing the search. The resulting
ROM number can then be read from the ROM_NO register. If no devices are present on the 1- Wire the reset
sequence will not detect a presence and the search is aborted.

Next

The 'NEXT' operation is to search on the 1-Wire for the next device. This search is usually performed after a
'FIRST' operation or another 'NEXT' operation. It is performed by leaving the state unchanged from the previous
search and performing another search. The resulting ROM number can then be read from the ROM_NO register.
If the previous search was the last device on the 1-Wire then the result will be FALSE and the condition will be
set to execute a 'FIRST' with the next call of the search algorithm.

Figure 3 (a, b, ¢) goes through a simple search example with three devices. For illustration, this example
assumes devices with a 2-bit ROM number only.

Page 5 of 18

Devices
A =01 (binary: bit 2, bit 1)

cett " AN resalt
C=11 = resy
) ! of ‘true’ bit ,
FIRST i | read !
bit1 Read - Read J
bt i complement-hit ,*
— —
A 1 o/
B o) i)
L 1 ! a
o' 0’
kit 2 Read Read
bat complemant-bif
& iwail state)
B 0 1
c iwait state)
0 1
Device B is found 00, LastDiscrepancy is now 7
NEXT
bit 1 Read Fead
bit complement-bit
& i 0
B Q 1
C 1 L1
0 0
bit 2 Read Read
kit complement-bit
A 0 I
B iwait state)
c 1 0
Q L1
Device A is found 07, LastDiscrepancy is now 2
MNEXT
bit 1 Read Read
bat complemant-bif
A 1 0
B 0 1
G 1 0
0 0
bit 2 Fead Read
kit cormplement-bit
A 0 1
B {wall slate)
c 1 0
0 0

Device © iz found 11, LastDeviceFlag is TRUE

|
i of the :
| ‘somplement’s
i bit read '

Wiite ;o 4 Bit written by !
direcion ¢ | master, path |
—_— ! taken !

o {bit position = LasiDiscrepancy)
Wirite:
direction

0 {only one path available)

Write
direction

1 (bt position = LasiDiscrepancy)
Wirite
direction

0 {bit position = LasiDiscrepancy)

Wirite
direction

(hit position < LastDiscrapancy)

.1

Write
diraction

(bit position = LastDiscrepancy)
1

Page 6 of 18

FIRST NEXT MEXT

Mote: Each branching at a bit level denotes a "discrepancy” where both the bit and
complemeant-bit return "0,

Page 7 of 18

{for simplicity the family discrepancy register and tracking has been left cut of this example)

FIRST

+ LastDiscrepancy = LastDevicelFlag = 0

* Do |-Wire resct and wait for presence pulse, if no presence pulse then done

id_bit_number = |, last_zero =1

Send scarch command, OF hex

Read first bit id _bat: 1 (Device A) AND O {Device B) AND 1 {Device C) = 0

* Read complement of first bit cmp id_bad: 0 {Device A) AND 1 {Device B) AMD 0 Devige C) = 0
Since id_bit_number > LastDiscrepancy then search_direction = 0, last_zero = |

+ 5Send search_direction bit of £, both Devices A and C go into wail state

Increment id_bit_number io 2

Read second bit wd_ bit: 0 (Device B) = 0

+ Read complement of second bit emp_id_bit: 1 {Device B) = |

#* Sinoce bit and complement are different then search_direction = id_bat

+ 5Send search_direction bit of 1, Device B is discovered with ROM_NO of “00° and 15 now selected
* LastDiscrepancy = last_zero

NEXT

Do 1-Wire reset and want for presence pulse, if no presence pulse then done

id_bit_number = 1, last_zero =10

Send search command, OF hex

Read first bitid_bit: 1 {Device A) AND O Device By AND | {Deviee C) =10

Read complement of first bit emp_id_bit: 0 {Device A) AND 1 (Device B) AND O {Device Cy=10
#+ Since id_bit_number = LastDiscrepancy then search_direction = 1

Send search_direction bit of 1. Devices B goes into wait state

Increment id_bit_nomber 1o 2

Read second batid_bit: 0 {Deviee A) AND 1 i{Deviee C) =10

¢ Read complement of sccond bit emp_id_bit: | {Device A) AND O {Device C) =10

#+ Since id_bit_number > LastDiscrepancy then search_direction = 0, last_zero =2

+ Send search_direction bit of (), Devices C goes into wait state

Device A s discovered with ROM_NO of *001° and 12 now selected

LastDiscrepancy = laslt_zeéro

NEXT

Do 1-Wire resel and wait for presence pulse, if no presence pulse then done

id_bit_number = |, last_zero =0

+ 5end scarch command, OF hex

® Read first bitid bit 1 (Device A) AND 0 {Device B) AND 1 (Device C) = 0

Read complement of first bit emp_id_bit: 0 (Device Ay AND 1 {Device B) AND O {Device Cy =1
Since id bit number < LasiDiscrepancy then search_direction = ROM_NO (first bit) = |
+ 5Send search direction bt of 1. Devices B goes into wail stale

+ Increment id_bit_number to 2

Read second bit od_bic: 0{Device A AND | (Device Ty = 0

Read complement of second bit emp _ad_bat: 1 {Device A) AND O {Device C) = 0

Since id bit nomber = LastDiscrepancy then search_direction = |

+ Send search direction bit of |, Devices A gocs info wait state

+ Device C is discovered with ROM_NO of “11° and is now selected

LastDiscrepancy © last_zero which i [s0 LastDeviceFlag ~ TRUE

NEXT
LastDeviceFlag s true so retum FALSE
LastDiscrepancy = LastDeviceFlag = 0

Figure 3. Search Example.
Page 8 of 18

Advanced Search Variations

There are three advanced search variations using the same state information, namely LastDiscrepancy,
LastFamilyDiscrepancy, LastDeviceFlag, and ROM_NO. These variations allow specific family types to be targeted
or skipped and device present verification (see Table 4).

Verify

The '"VERIFY' operation verifies if a device with a known ROM number is currently connected to the 1- Wire. It is
accomplished by supplying the ROM number and doing a targeted search on that number to verify it is present.
First, set the ROM_NO register to the known ROM number. Then set the LastDiscrepancy to 64 (40 hex) and the
LastDeviceFlag to 0. Perform the search operation and then read the ROM_NO result. If the search was
successful and the ROM_NO remains the ROM number that was being searched for, then the device is currently
on the 1-Wire.

Target Setup

The 'TARGET SETUP' operation is a way to preset the search state to first find a particular family type. Each 1-
Wire device has a one byte family code embedded within the ROM number (see Figure 1). This family code
allows the 1-Wire master to know what operations this device is capable of. If there are multiple devices on the
1-Wire it is common practice to target a search to only the family of devices that are of interest. To target a
particular family, set the desired family code byte into the first byte of the ROM_NO register and fill the rest of
the ROM_NO register with zeros. Then set the LastDiscrepancy to 64 (40 hex) and both LastDeviceFlag and
LastFamilyDiscrepancy to 0. When the search algorithm is next performed the first device of the desired family
type will be discovered and placed in the ROM_NO register. Note that if no devices of the desired family are
currently on the 1-Wire, then another type will be found, so the family code in the resulting ROM_NO must be
verified after the search.

Family Skip Setup

The 'FAMILY SKIP SETUP' operation sets the search state to skip all of the devices that have the family code that
was found in the previous search. This operation can only be performed after a search. It is accomplished by
copying the LastFamilyDiscrepancy into the LastDiscrepancy and clearing out the LastDeviceFlag. The next
search will then find devices that come after the current family code. If the current family code group was the
last group in the search then the search will return with the LastDeviceFlag set.

Table 4. Search Variations State Setup

- LastDiscrepancy E?;éf:&'r%; LastDeviceFlag|ROM_NO
0 0 0

FIRST result
NEXT leave unchanged leave unchanged leave unchanged result
set with ROM to
VERIFY 64 0 0] verify, check if
same after search
set first byte to
TARGET .
SETUP 64 0 0 family code, set

rest to zeros

g’é_l:_/ld:;Y SIS copy from LastFamilyDiscrepancy O 0 leave unchanged

Page 9 of 18

Conclusion

The supplied search algorithm allows the discovery of the individually uniqgue ROM numbers from any given
group of 1-Wire devices. This is essential to any multidrop 1-Wire application. With the ROM numbers in hand,
each 1-Wire device can be selected individually for operations. This document also discussed search variations to
find or skip particular 1-Wire device types. See Appendix for a 'C' code example implementation of the search
and all of the search variations.

Appendix

Figure 4 shows a 'C' code implementation of the search algorithm along with a function for each search variation.
The FamilySkipSetup and TargetSetup functions do not actually do a search, they just setup the search registers
so that the next 'Nexti skips or finds the desired type. Note that the low-level 1-Wire functions are implemented

with calls to the TMEX API. These calls are for test purposes and can be replaced with platform specific calls. See
Application Note 155 for a description of the TMEX APl and other 1-Wire APIs.

The TMEX API test implementation of the following code example can be downloaded from the Maxim website.

/1 TMEX APl TEST BU LD DECLARATI ONS
#defi ne TMEXUTI L

#i ncl ude "i bt mexcw. h"

| ong sessi on_handl e;

/1 END TMEX APl TEST BU LD DECLARATI ONS

[/l definitions
#defi ne FALSE O
#define TRUE 1

/'l method decl arations

int OANirst();

int OMext();

int OMWerify();

voi d OAlar get Set up(unsi gned char fam |y_code);
voi d OWFami | ySki pSet up() ;

int OAReset();

void ONViteByte(unsigned char byte_ val ue);
void ONMViteBit(unsigned char bit_val ue);
unsi gned char OAReadBit();

int OWNBearch();

unsi gned char docrc8(unsi gned char val ue);

/'l gl obal search state
unsi gned char ROM NJ 8] ;

i nt LastDi screpancy;

i nt LastFam | yDi screpancy;
i nt Last Devi ceFl ag;

unsi gned char crcS8;

// Find the 'first' devices on the 1-Wre bus
/!l Return TRUE : device found, ROM nunber in ROM NO buffer

/1 FALSE : no device present
/1

int OWFirst()

{

/] reset the search state
Last Di screpancy = O0;

Page 10 of 18

http://www.maxim-ic.com/an155
http://files.dalsemi.com/pub/auto_id/public/an187.zip

Last Devi ceFl ag = FALSE;
Last Fani | yDi screpancy = 0;

return OWBearch();

/1 Find the 'next' devices on the 1-Wre bus
/1l Return TRUE : device found, ROM nunmber in ROM _NO buffer

[/ FALSE : device not found, end of search
/1
int OMANext ()

/'l | eave the search state al one
return OWBearch();

/1l Performthe 1-Wre Search Algorithmon the 1-Wre bus using the existing
/| search state.
/1l Return TRUE : device found, ROM nunmber in ROM _NO buffer

/1 FALSE : device not found, end of search
/1

i nt OWsear ch()

{

int id bit_nunber;

int last_zero, rombyte nunber, search result;
int id_bit, cnp_id_bit;

unsi gned char rom byte nask, search_direction;

/1 initialize for search
id bit nunmber = 1;

| ast _zero = O;

rom byt e nunber
rom byte mask
search_result
crc8 = 0;

0;

i
0;

// if the last call was not the | ast one
i f (!LastDeviceFl ag)
{

/1 1-Wre reset

if (!'ONReset())

{
/'l reset the search
Last Di screpancy = O0;
Last Devi ceFl ag = FALSE;
Last Fani | yDi screpancy = 0;
return FALSE;

}

/! issue the search command
OMN i t eByt e(OXFO) ;

/1 loop to do the search

do

{
/1l read a bit and its conpl enent
id_bit = ONReadBit();
cnp_id bit = OMNReadBit();

Page 11 of 18

/'l check for no devices on 1-wire
if ((id_bit == 1) & (cnp_id_bit == 1))
br eak;
el se
{
/1 all devices coupled have 0 or 1
if (id_bit !'=cnp_id_bit)
search_direction = id bit; // bit wite value for search
el se
{
/1 if this discrepancy if before the Last Di screpancy
/1 on a previous next then pick the sane as last tine
if (id_bit_nunber < LastDi screpancy)
search_direction = ((ROM NJ rom byte nunber] & rom byte nmask) > 0);
el se
/1 if equal to last pick 1, if not then pick O
search_direction = (id_bit_nunmber == LastDi screpancy);

/1 if O was picked then record its position in LastZero
if (search_direction == 0)

| ast_zero = id_bit_nunber;

/1 check for Last discrepancy in famly
if (last_zero < 9)
Last Fam | yDi screpancy = | ast_zero

}

/1l set or clear the bit in the ROM byte rom byte nunber
/1 with mask rom byte mask
if (search_direction == 1)
ROM_ NJ rom byt e_nunber] |= rom byte_nask;
el se
ROM N rom byt e _nunber] &= ~rom byte mask;

/1l serial nunber search direction wite bit
OMViteBit(search_direction);

/1 increnment the byte counter id_bit_ nunber
/1 and shift the nmask rom byte nask

id bit_nunber++;

rombyte mask <<= 1;

/1 if the mask is O then go to new Serial Num byte rom byte nunber and reset nask
if (rombyte mask == 0)
{

docrc8(ROM_NJ rom byte_nunber]); // accumul ate the CRC

rom byt e nunber ++;

rombyte mask = 1;

}
}
whi l e(rom byte nunber < 8); // loop until through all ROM bytes 0-7

/1l if the search was successful then
if ('((id_bit_nunber < 65) || (crc8 !'=10)))
{

/'l search successful so set LastDi screpancy, Last Devi ceFl ag, search_resul t
Last Di screpancy = | ast_zero;

Page 12 of 18

/1l check for |ast device
i f (LastDiscrepancy == 0)
Last Devi ceFl ag = TRUE;

search_result = TRUE

}
}
/1 if no device found then reset counters so next 'search' will be like a first
if (!search result || 'ROM NJO 0])
{
Last Di screpancy = O0;
Last Devi ceFl ag = FALSE;
Last Fami | yDi screpancy = 0;
search_result = FALSE;
}
return search _result;
}
e e i TR

/1 Verify the device with the ROM nunmber in ROM NO buffer is present.
/1l Return TRUE : device verified present

/1 FALSE : devi ce not present
I

int OWerify()

{

unsi gned char rom backupl 8];
int i,rslt,|d backup,!|df backup,!|fd backup;

/'l keep a backup copy of the current state
for (i =0; i < 8; i++)
rom backup[i] = ROMNJi];
| d_backup = LastDi screpancy;
| df _backup = Last Devi ceFl ag;
| fd backup = Last Fani | yDi screpancy;
/1l set search to find the sane device
Last Di screpancy = 64;
Last Devi ceFl ag = FALSE;

if (OWsearch())

{
/1l check if sanme device found
rslt = TRUE;
for (i =0; i < 8; i++)
{
if (rombackup[i] '= ROMNJIi])
{
rslt = FALSE;
br eak;
}
}
}
el se

rslt = FALSE;

/'l restore the search state
for (i =0; i < 8; i++)
ROM N i] = rom backup[i];

Page 13 of 18

Last Di screpancy = | d_backup;
Last Devi ceFl ag = | df _backup;
Last Fam | yDi screpancy = | fd_backup;

/1 return the result of the verify
return rslt;

/1l Setup the search to find the device type 'fam |y _code' on the next
/1 to OMNext() if it is present.

/1
voi d OAWTlar get Set up(unsi gned char fam |y_code)
{ . .
int i;
/'l set the search state to find SearchFam |y type devices
ROM N 0] = fam|y_code;
for (i =1; i < 8; i++)
ROM NJi] = 0;
Last Di screpancy = 64;
Last Fam | yDi screpancy = 0;
Last Devi ceFl ag = FALSE;
}
e e

/1l Setup the search to skip the current device type on the next call
/1 to OMNext ().

voi d OWFami | ySki pSet up()
/1l set the Last discrepancy to last fam |y discrepancy
Last Di screpancy = Last Fam | yDi screpancy;
Last Fam | yDi screpancy = 0;
/'l check for end of Iist

if (LastDiscrepancy == 0)
Last Devi ceFl ag = TRUE;

/1 1-Wre Functions to be inplenented for a particular platform

/1 Reset the 1-Wre bus and return the presence of any device
/1 Return TRUE : device present

/1 FALSE : no device present
/1

int O\Reset ()

{

/1 platformspecific
/1 TMEX APl TEST BUI LD
return (TMIouchReset (session_handle) == 1);

/1 Send 8 bits of data to the 1-Wre bus
/1
void ONMViteByte(unsigned char byte val ue)

Page 14 of 18

/1 platformspecific

/1 TMEX APl TEST BUI LD
TMIouchByt e(sessi on_handl e, byt e val ue) ;

/1 Send 1 bit of data to teh 1-Wre bus
/1
void OMViteBit(unsigned char bit_val ue)

{

/1 platformspecific

/1 TMEX APl TEST BUI LD
TMlouchBi t (sessi on_handl e, (short)bit val ue);

/! Read 1 bit of data fromthe 1-Wre bus
/!l Return 1 : bit read is 1

/1 O : bit read is O

/1

unsi gned char OAReadBit ()

/1 platformspecific

/1 TMEX APl TEST BUI LD

return (unsigned char) TMIouchBit (sessi on_handl e, 0x01) ;

}

/1 TEST BU LD
static unsigned char dscrc_table[] = {

0, 94,188,226, 97, 63,221, 131, 194, 156, 126, 32, 163, 253, 31, 65,
157,195, 33, 127,252,162, 64, 30, 95, 1,227,189, 62, 96, 130, 220,

35,125, 159, 193, 66, 28, 254, 160, 225, 191,

93, 3,128,222, 60, 98,

190, 224, 2, 92,223,129, 99, 61, 124, 34,192,158, 29, 67,161, 255,

70, 24,250, 164, 39, 121, 155, 197, 132, 218,

56, 102, 229, 187, 89, 7,

219,133,103, 57,186,228, 6, 88, 25, 71,165, 251,120, 38, 196, 154,

101, 59,217,135, 4, 90, 184, 230, 167, 249,

27, 69,198, 152,122, 36,

248,166, 68, 26,153,199, 37,123, 58,100, 134,216, 91, 5, 231, 185,
140, 210, 48, 110,237,179, 81, 15, 78, 16,242,172, 47,113, 147, 205,
17, 79,173, 243,112, 46, 204, 146, 211, 141, 111, 49,178, 236, 14, 80,
175,241, 19, 77,206, 144, 114, 44,109, 51, 209, 143, 12, 82,176, 238,

50, 108, 142, 208, 83, 13,239, 177, 240, 174,

76, 18, 145, 207, 45,115,

202, 148, 118, 40,171, 245, 23, 73, 8, 86,180, 234,105, 55, 213, 139,
87, 9,235,181, 54,104, 138, 212, 149, 203, 41, 119, 244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151, 201, 74, 20, 246, 168,

116, 42,200,150, 21, 75,169, 247, 182, 232,

10, 84, 215,137,107, 53};

/1 Calculate the CRC8 of the byte value provided with the current

/1 global 'crc8' value.

/1l Returns current global crc8 val ue

/1

unsi gned char docrc8(unsi gned char val ue)

{
/1 See Application Note 27

/1 TEST BU LD

Page 15 of 18

crc8 = dscrc_table[crc8 ~ val ue];
return crcs;

}

R e
/1 TEST BU LD MAIN

/1

int mai n(short argc, char **argv)

{

short Port Type=5, Port Num=1;
int rslt,i,cnt;

/1 TMEX APl SETUP
/1l get a session
sessi on_handl e = TMExt endedSt art Sessi on(Port Num Port Type, NULL) ;
if (session_handle <= 0)
{
printf("No session, %\ n", session_handle);
exit(0);
}

/'l setup the port

rslt = TMSet up(sessi on_handl e);

if (rslt = 1)

{
printf("Fail setup, %\n",rslt);
exit(0);

}

/1 END TMEX APl SETUP

/1 find ALL devices
printf("\nFIND ALL\n");

cnt = 0O;

rslt = OWFirst();
while (rslt)

{

/1 print device found

for (i =7, i >=0; i--)
printf("%2X"', ROMNJi]);

printf(" %\ n",++cnt);

rslt = OMNext();
}

/1 find only Ox1A
printf("\nFIND ONLY Ox1A\n");
cnt = 0;

OWrar get Set up(0x1A) ;

while (OMNext())

{
/1l check for incorrect type
if (ROMLNQ 0] != 0Ox1A)
br eak;
/1 print device found
for (i =7, i >=0; i--)
printf("%®2X"', ROMNJi]);
printf(" %\ n",++cnt);
}

Page 16 of 18

/] find all

cnt =

while (rslt)

{

/] check for

el se

{

but 0x04, Ox1A, 0x23, and 0x01
printf("\nFI ND ALL EXCEPT 0x10, 0x04, OxO0A, Ox1A, 0x23,
0;

rslt = OWNFirst();

i ncorrect type
if ((ROM_NJ 0]
(ROM.NJ 0]
(ROVLNT 0]

== 0x04) || (ROM NJ 0] == 0x1A) ||
== 0x01) || (ROM NO 0] == 0x23) ||
== 0x0A) || (ROM.NJ 0] == 0x10))

OWFani | ySki pSet up();

/1 print device found

for (i =7;

i >=0; i--)

printf("9®2X", ROMNJIi]);

printf(" %\ n", ++cnt);
}
rslt = OMNext ();
}
/1 TMEX APl CLEANUP

/'l release the session
TMEndSessi on(sessi on_handl e) ;
/1 END TMEX API

Revision History
01/30/02 Version 1.0—Initial release

05/16/03 Version 1.1—Corrections: Search ROM commands corrected to FO hex.

CLEANUP

0x01\ n");

Related Parts

DS18B20:
DS18S20:
DS1904:
DS1920:
DS1921G:

QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet
QuickView -- Full (PDF) Data Sheet

DS1963S: QuickView

DS1971:
DS1973:
DS1982:
DS1985:
DS1990A:
DS1992:
DS1993:
DS1995:
DS1996:

QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples

Page 17 of 18

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2812/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2812
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18B20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2815/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2815
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18S20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2817/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2817
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1904&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2818/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2818
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4023/ln/en
http://www.maxim-ic.com/getds.cfm/pk/4023
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2822/ln/en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2823/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2823
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1971&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2824/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2824
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1973&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2825/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2825
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1982&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2827/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2827
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1985&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2829/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2829
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1990A&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2831/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2831
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1992&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2831/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2831
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1993&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2832/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2832
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1995&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2833/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2833
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1996&ln=en

DS2401:
DS2406:
DS2408:
DS2411:
DS2411:
DS2417:
DS2431:
DS2432:
DS2433:
DS2438:
DS2450:
DS2502:
DS2502:
DS2505:
DS2506:
DS2740:
DS2762:

QuickView

-- Full (PDF) Data Sheet -- Free Samples

QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Abridged Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet

QuickView -- Full (PDF) Data Sheet -- Free Samples
QuickView -- Full (PDF) Data Sheet -- Free Samples

Automatic Updates
Would you like to be automatically notified when new application notes are published in your areas of interest?
Sign up for EE-Mail™.

Application note 187: www.maxim-ic.com/an187

More Information
For technical support: www.maxim-ic.com/support

For samples: www.maxim-ic.com/samples
Other questions and comments: www.maxim-ic.com/contact

AN187, AN 187, APP187, Appnotel87, Appnote 187
Copyright © by Maxim Integrated Products
Additional legal notices: www.maxim-ic.com/legal

Page 18 of 18

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2903/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2903
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2401&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2907/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2907
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2406&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3818/ln/en
http://www.maxim-ic.com/getds.cfm/pk/3818
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2408&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3711/ln/en
http://www.maxim-ic.com/getds.cfm/pk/3711
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2411&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3711/ln/en
http://www.maxim-ic.com/getds.cfm/pk/3711
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2411&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2911/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2911
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2417&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4272/ln/en
http://www.maxim-ic.com/getds.cfm/pk/4272
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2431&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2914
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2432&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2915/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2915
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2433&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2919/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2919
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2438&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2921/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2921
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2450&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2924/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2924
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2502&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2924/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2924
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2502&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2927/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2927
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2505&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2928/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2928
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3801/ln/en
http://www.maxim-ic.com/getds.cfm/pk/3801
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2740&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3950/ln/en
http://www.maxim-ic.com/getds.cfm/pk/3950
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2762&ln=en
http://www.maxim-ic.com/ee_mail/home/subscribe.mvp?phase=apn
http://www.maxim-ic.com/an187
http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact
http://www.maxim-ic.com/legal

