A brief introduction to

Implementing PID Control on a Microcontrollers

(SWR 18 Aug 2009)

Overview: PID (Proportional, Integral, Derivative) control is a widely-used method to achieve and maintain a process set point. The process itself can vary widely, ranging from temperature control in thousand gallon vats of tomato soup to speed control in miniature electric motors to position control of an inkjet printer head, and on and on. While the applications vary widely, the approach remains quite similar. The PID control equation may be expressed in various ways, but a general formulation is:

Drive = kP*Error + kI*Σ Error + kD * dP/dT

where Error is the difference between the actual value of the process variable (temperature, speed, position) and the desired set point, usually written as Error = (SetPoint-Actual);

Σ Error is the summation of previous Error values; and dP/dT is the time rate of change of the process variable being controlled. The proportional coefficient kP, the integral coefficient kI, and the derivative coefficient kD are gain coefficients which tune the PID equation to the particular process being controlled. Drive is the total control effort (often a voltage or current) applied to actuators (heater, motor, valve) to achieve and hold the set point.

Tuning methods: Not all of the terms in the PID equation are necessarily used. Fitting the PID approach to a particular control problem involves tuning; deciding which terms to include, and determining what the gains should be for those terms. The Wikipedia page http://en.wikipedia.org/wiki/PID_controller presents the basic PID approach and outlines some tuning methods. Although there are analytical approaches, rules of thumb, and specialized software among other methods for gain coefficient selection, the gains are often arrived at, particularly in small model systems, by observing the actual response of the process to a particular set of coefficients and adjusting them until good control is achieved.

Coding a PID control algorithm: Coding a PID system is conceptually straightforward. The following is an example of some pseudocode to do PID:

Start:

 Error = Setpoint - Actual

 Integral = Integral + Error

 Derivative = Last – Actual

 Drive = (Error*kP) + (Integral*kI) + (Derivative*kD)

 Last = Actual

 wait(dt)

GOTO Start

This pseudocode is not written in any particular computer language nor written for any particular microcontroller, but does lay out the basic steps to achieve control using the PID approach. It also leaves out a few details which usually have to be included depending on the particular control problem and the particular controller being used.

The program code shown below is actual working code written in the PIC Basic Pro compiler for the X2 board which you will use as the control platform for your project:

[image: image1.jpg]RETURN

Error
kP = kPbase HIN (32767/ABS(Error))
if abs(Error) < IntThresh then

SetPt - Actual

Integral

else
Integra

ENDIF

Errorskp

Integral=kl

(Last-Actual) xkD

Drive = P + 1+ D

LOOKUP Drive.15,["fr"],Direction

Drive - ABS(Drive)

Drive - Drive/100

Drive - Drive HIN 64

Integral + Error

- Calculates the PID drive value -

‘calculate the current error
‘linit kP to max of 32767/Error
‘prevent integral ‘windup

‘accunulate the error integral

‘zero it if out of bounds

‘calc proportional term
“integral term

‘derivative tern

‘Total drive = P+I+D

*Drive direction (8/1 => £/r)
‘get absolute value of drive

*scale drive down

‘linit speed cnd to max of 64

SEROUT2 PortB.8,84,[Hotor ,Direction,Drive] send conmand to motor board

Last = Actual

‘save current process value

Negative numbers and two’s complement arithmetic: The coding above is analogous to the pseudocode shown previously, but includes some additional details as applied to our particular control problem, microcontroller, and compiler. Note: It’s not necessary to completely understand the following discussion on two’s complement arithmetic in order to successfully work with PID control here. It is included because in the past uncertainty of how to treat negative numbers has caused unnecessary frustration in coding a PID project.

In PIC Basic Pro there are no explicitly defined signed integer types. Integers can be of type BYTE or WORD, but in both cases they are variables which range 0-255 (byte) or 0-65535 (word). No negatives. In the case of a word variable, if A=20 and B=30, an operation like A-B will yield a value of 65435. This result has caused confusion in the past. However, it is a valid result, and is actually the two’s complement representation of -10, which is the result you probably expected to see.

This result comes about in the following way: Counting backward 3, 2, 1, 0, -1, -2, -3, … these values would be internally represented in the PIC microcontroller as 3, 2, 1, 0, 65535, 65534, 65533, … The last three values are the two’s complement representation of -1, -2, -3, and are the values which the microcontroller actually uses in it’s arithmetic operations. Consider the following table of 16-bit word values:

 bit 15 bit 0 PIC internal decimal value

 ↓ ↓ representation for humans

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 3

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65535 -1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 65534 -2

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 65533 -3

If you complete this table you will find that in the positive direction bit 15 is a zero up until the value 32767, which in binary is 0111111111111111. In the negative direction (decreasing from 65535, 65534, 65533, …) you would find that bit 15 is a 1 until 32768 (binary 1000000000000000. This means that if you are willing to change your mindset, you can consider a 16-bit WORD variable as positive or negative 32767, depending if bit 15 is 0 (positive) or 1 (negative). This is in fact how we can make use of the PIC arithmetic to automatically take care of the sign for us.

The significance is that as the PID terms are being calculated you don’t have to be concerned with the signs of any of the intermediate results. At any given time the process variable might be above or below the set point, resulting in positive or negative errors. But the signs takes care of themselves as the P, I, and D calculations are performed. You simply add up all the terms at the end: Drive = P+I+D.

The only time you need to check the sign is in the final result. Refer to the PID program code above. The PIC Basic Pro compiler has a useful operator, the dot operator, which lets you directly manipulate individual bits in a variable. Thus, Drive.15 in the LOOKUP instruction refers to the value of bit 15 in the variable named Drive. It’s either a zero or a 1. From our discussion above, if Drive.15 is a 1 we take Drive to be negative; if it’s a zero then Drive is positive. This feature is used in the LOOKUP instruction to establish the direction in which to apply the Drive control effort. You can read about the LOOKUP instruction in the compiler online Help, but basically the way LOOKUP works is that if Drive.15 is a zero then f is selected from the argument list. If it’s a 1, then r is selected. This now defines the Direction variable.We then just take the absolute value of the Drive variable for the control effort. Now we have both the Drive control effort and the Direction, which we send to the motor board with the SEROUT2 instruction.

The program code also uses the MIN operator in two places. First, it limits the value of the proportional gain kP so that the Error*kP product does not overflow the value 32767. This might occur if large values for kP are chosen or if the error is very large. The MIN operator is used again to limit the speed parameter value sent to the motor board, which has a maximum allowed value of 64.

And finally, we place some limits on the integral term. The integral is the summation of the previous errors. At startup the process value is often far from the set point. This means the integral initially grows large very quickly and begins to dominate the PID calculations, often causing loss of control or instability. This effect of the integral term is called windup. To avoid this effect we limit the times when the integral summation can proceed. There are several ways this limit might be imposed, but here we simply say that the integral term will be summed only when the error is less than some threshold value. In practice this means the integral summation is not carried out unless the process is rather close to the set point, at which time the integral term is allowed to accumulate so that any remaining small offset error is finally forced to zero.

And note that we do not treat time explicitly. We assume the control code loops with a constant cycle time and treat the dP/dT in incremental form as the change in P per loop.

Motor Board usage: The motor board is easy to use. It has a number of built-in functions, but we will be using only the two bi-directional DC motor drive outputs, denoted Out1 and Out2. To control a DC motor three parameters are required: Which motor (1 or 2), which direction (f or r), and the speed (0-64). The syntax for sending a command to the motor board is:

SEROUT2 pin,84,[motor,direction,speed]

An example command would be:

SEROUT2 PortB.0,84,[2,r,53]

where PortB.0 is the pin used to communicate the command to the motor board, 84 defines the communication transmission rate (84 means 9600 baud), 2 means we want to control motor number 2 (connected to Out2), r says we want the movement to be in the reverse direction, and 53 is the motor speed we want. Typically the motor number, direction and speed would be programmatically defined as shown in the PID example code above.

Connections to the motor board are shown in the diagram below:

Motor Controller Board

When making your connections BE SURE to get the correct polarity on the motor power:

+ to + and – to –

Failure to get these connections right will likely be catastrophic!

The Out1 and Out2 outputs can source a maximum current of 2 amps each, and for continuous duty at the full current a heat sink would be required on the L298 dual H-bridge to prevent it from overheating. However, in our application the full current will typically only be used for short periods as the control system drives the motor toward the set point. Once near the set point (and this should take only a second or less) the motor current will drop to low values. Assuming of course that there are no bugs in your software.

Below is a sample PID run using the code shown earlier:

[image: image2.wmf]Time (milliseconds)

0

500

1000

1500

2000

2500

3000

Position (ADC Counts)

200

300

400

500

600

700

800

900

1000

Sample PID Run

Set Point = 800

kP = 200

kI = 3

kD = 50

Integral threshold = 25

1 PID cycle = 14.5 mS

There is some overshoot and the set point is achieved in about 500 mS. The overshoot could be improved by readjusting the gain coefficients, but sometimes response speed is more important than the overshoot. Gain adjustments allow you to optimize the control action for the process being controlled.

Out1

Out2

Out2

Out1

Out2

X2 PortB.0

Motor Power

X2 Ground

Motor 1

Motor 2

Out1

Out2

6

_161448404.bin

