To reduce the switching losses in V1019, a dV/dt limiter, often called "snubber", is used. C1021 decreases the dV/dt of the collector voltage of V1019 during switching off, as the current to the transistor can pass during a certain time through C1021. This slowing down of the collector voltage will reduce the switching losses during switching off. During the ON cycle, the energy in C1021 is transferred to L1006 and the capacitor is discharged. During the OFF cycle, the energy in L1006 is transferred to C1018 and during the next ON cycle, the energy in C1018 is delivered to the transformer. In that way, no energy is wasted. As a consequence of this system, the voltage at the transformer is slightly increased during the first part of the ON cycle, but this has no disadvantages.

Voltage regulation takes place by varying the control voltage from R1046 to the gate of V1014. A more positive voltage will cause a smaller peak current through the transformer and this results in smaller output voltages. The converter frequency can be 20 to 50 kHz. This depends on the mains voltage and the load of the power supply. The lower the mains voltage, the lower the frequency. A lower load means a higher frequency. R1018 compensates for gate-cathode voltage variations of V1014 due to the temperature.

Line trigger circuit

For triggering purposes, a sinusoidal signal at the mains frequency is available. Of course there will be no LINE signal if the mains voltage is DC.

A small signal is picked up with capacitors C1002, C1003, C1004 and C1006 and amplified in N1046. This results in output signal at pin 1. This circuit provides a sine-wave with low distortion and with an amplitude of 3 to 8 V, depending on the mains voltage.

Diagram 2

Diagram 2 comprises the following circuit parts:

- trace rotation control
- fan control
- illumination control
- EHT converter

Trace rotation control

To supply the trace rotation coil, of which the resistance is about 200 Ω , a voltage of -10 V to +10 V is created in amplifier V1146-1147. Control takes place via a part of N1101 by means of the signal DAC3 which can be 1 to 10 V, together with the signal DAC0 with a level between 1 and 3V. The signals DAC3 and DAC0 originate from the microprocessor unit A3.

Fan control

The speed the cooling fan depends on the temperature in the oscilloscope. This temperature is measured at the microprocessor unit A3 by a NTC resistor. The microprocessor generates the signal DAC1 with a level of about 1.7 to 4 V. The fan is supplied by amplifier V1148 which is controlled by this signal. The output from the amplifier is a DC voltage of -10 to +10 V.