
Stamp Applications no. 22 (December ’96):

Scan a Keypad with the BS2
For Pushbutton User Input

16-key matrix keypad software
plus beginner’s race-timer project
by Scott Edwards

THE BUTTON instruction offered by both of the
BASIC Stamps makes it easy to interface one or
two buttons to your project. But if your
application requires more sophisticated input, a
keypad is almost a necessity.

Button doesn’t do keypads.
This month, we’ll look at a typical keypad and

write a general-purpose BS2 subroutine for
reading it.

In BASIC for Beginners, we’ll use Boolean
logic to craft an elegant three-lane race timer
demo with the BS1.

Matrix Keypad. Figure 1 is a 16-button keypad
made by Grayhill and sold through Digi-Key
(Sources). As the circuit shows, a keypad is more
than just a bunch of buttons bolted to a panel.
It’s a matrix arrangement designed to minimize
the number of I/O lines required to read the
buttons. Ordinarily, reading 16 button states
would require 16 inputs. By arranging the
buttons into rows and columns as shown in the
figure, we cut the number of pins to eight. This
savings in hardware requires some additional
software—a keypad scanning routine.

1

2

3

4

5 6 7 8

1 2 3 4 5 6 7 8

Grayhill Keypad
(DK: GH5003-ND)

Equivalent Circuit
1–4 rows; 5–8 columns

Figure 1. Typical matrix keypad.

Stamp Applications no. 22, December 1996

2

The duties of keypad-scanning code are:

• To determine whether or not a key is
pressed.

• If a key is pressed, to determine which one.
• To notify the rest of the program that

keypad input is available.
• To avoid registering more than one input for

a given keypress.

Although that sounds like a lot, a keypad
scanning routine can be quite compact, as listing
1 shows.

1 2 3 4 5 6 7 8

+5V

0 1 2 3 4 5 6 7

Keypad

BS2pullups:
10k to 100k

zap
protection
resistors:
220Ω to 1k

Figure 2. Hookup for listing 1.

The keypad scanner is a systematic search. It
starts with all connections to the keypad set to
input. The pins are set high (1) by pullup
resistors. The object of the search is to
determine whether one of the rows of the
keypad is shorted to one of the columns. The
scanner outputs a 0 to one of the rows, then
looks at the column inputs to see whether that 0
shows up. If not, it turns off that row output and
tries the next row.

When the scanner does find a 0 on a column
input, it can easily determine which key is
pressed using this logic: If we number the keys
from top-left to bottom-right, the first row of
keys consists of 0, 1, 2, 3; second—4, 5, 6, 7;
third—8, 9, 10, 11; and fourth—12, 13, 14, 15.

So the key number is (4 x row) + column. Of
course, that orderly numbering of the keys does
not match the labels on the keypad itself, which
is scrambled to conform to the arrangement of a
phone keypad, but a lookup table takes care of
that.

That’s the core of the listing-1 keypad scanner.
There are some other subtleties:

• The scanner uses the NCD operator to
convert the column bits into a bit position. For
example, suppose the column bits are arranged
with the 0 in bit 2, %1011 (% is the PBASIC
symbol for binary numbers). The program
inverts %1011 to 0100 using the logical-not
operator (~). Then it applies the “priority
encoder” operator NCD, which returns the bit
position plus 1, which is 3.

• The NCD writeup in the current BS2
manual is wrong. It indicates that NCD returns
the bit number, 0—15, of the highest bit position
of a value that contains a 1. If the value doesn’t
contain a 1 in any bit position (value = 0), NCD
is supposed to return 255. However, NCD
actually returns 0 for a input value of 0, and 1—
16 as the highest bit position containing a 1.
That’s why the program subtracts 1 from the
NCD result before computing the key number.

• Efficiency-minded programmers might be
wondering why I used separate program lines to
invert the column bits and compute their NCD.
Why not do ’em both with one expression: NCD
~ col? Try it. The program won’t work. The
reason is that PBASIC2 does all of its math and
logic in a 16-bit workspace. Only when the
result is written to a variable are the extra bits
trimmed off. Consider what happens when you
invert a 4-bit number like %1011 in a 16-bit
workspace. First the number is converted to its
16-bit equivalent, %0000000000001011. It is
inverted to %1111111111110100. Then the NCD
of this value is computed, yielding 16. But the
answer we expect is 3, based on the 4-bit value
%0100. To get the correct result we have to trim
off the additional bits, either by ANDing the
intermediate result with %1111, or by simply
writing it into the 4-bit variable. I chose the
latter, because it seems clearer to me.

• The scanning routine uses a bit variable, db,
to debounce the keypad input. Debouncing
prevents multiple responses to a single keypress
by setting some condition for registering a new
press. In this case, the condition is that the
previously pressed key must be released before a
new press will register. You can test this by
holding a key down—only one response will

Stamp Applications no. 22, December 1996

3

appear on the Debug screen.
• Another bit variable, press, is used to tell

the main program that the scan routine has
detected a keypress. It’s the program’s
responsibility to clear this bit once it has
processed the input.

• Finally, a hardware note: In figure 1 there
are resistors in series with the lines to the
keypad. These are not strictly necessary; they
are just a precaution against static damage. If
you are just bench-testing the circuit, feel free to
omit them. But if you are building a device that
will be used in the real world, spring for the
resistors. They are cheap, partial protection
against static zaps from users’ fingertips.

BASIC for Beginners. Last month we started
work on a three-lane race timer using the BS1.
We wrote some code to detect the start-of-race
pulse, but ran into difficulty with maintaining
independent timing on the three lanes while
reliably detecting an end-of-race condition. After
exploring some blind alleys, we concluded that
the solution might be to keep a record of each
car’s status in terms of “in-the-race” or
“finished.” If a particular car is in the race, then
we update its elapsed time, otherwise we stop
the timer on that car. If all cars are finished, the
race is over.

To save you the trouble of dragging out the
previous issue of N&V , figure 3 once again
shows the race-timer switches.

+5V
10k (all)

Race Start

Finish 3

Finish 2

Finish 1

pin 7

pin 2

pin 1

pin 0

BS1

Figure 3. Arrangement of race-timer switches.

Now that we have a logical way to keep times
and detect the end of the race, let’s see how our
ideas translate into a BASIC program. Let’s
start with variables.

First, we need to decide how to store the cars’
times. We can choose from three storage sizes:
bits (0,1), bytes (0—255) or words (0—65535).
Clearly, bits are not suitable for storing race
times, so the choice is between bytes and words.

It would be nice to base the decision on some
hard facts, like the timing resolution in
units/second and the maximum length in
seconds of a race. For example, if races last 10
seconds or less and timing resolution is 1000
units/second, then we need variables that can
hold values up to 10,000.

At this point, though, we don’t know what our
timing resolution might be. A stock BS1
executes about 2000 instructions per second; a
quad-speed Counterfeit, about 8000. It will
certainly take several instructions to keep time
and detect the end-of-race, so we’ll estimate a
maximum of 2000 units/second at quad speed.
At that rate, a byte variable would give us a
maximum racing time of 255 x 1/2000 = 0.12
seconds. A word variable would provide 65535 x
1/2000 = 32.7 seconds. So the race timers will be
word variables.

How about race status? We really need only
two conditions—racing and finished. That’s an
ideal job for bit variables. We can use a 1 to
represent racing and 0 to represent finished.

Next we need to determine how these
variables will work together. Without writing
any real code, let’s sketch the main loop of the
program. (I’m using a different typeface to
indicate that this is not PBASIC, but
pseudocode , a sort of pidgin-English/BASIC):

Timing:
 Get state of Finish switches
 Update racing/finished status bits
 If status1 = racing, then increment time1
 If status2 = racing, then increment time2
 If status3 = racing, then increment time3
 If status1=done AND status2=done AND...
 ...status3=done then Finished, else goto Timing
Finished:
 Report race times

Stamp Applications no. 22, December 1996

4

Seems like a lot of If...Thens. Thinking about
the status bits; they are going to contain 1 for
racing and 0 for done. What if we change that
to:

Timing:
 Get state of Finish switches
 Update racing/finished status bits
 time1= time1 + status1
 time2= time2 + status2
 time3= time3 + status3
 If status1=done AND status2=done AND...
 ...status3=done then Finished, else goto Timing
Finished:
 Report race times

Adding the status bit to the race time
accomplishes the same thing as using the status
bit to decide whether or not to add 1 to the race
time. And it’s a heckuva a lot simpler.

Now, what about those vague phrases
regarding getting the state of the finish switches
and updating the status bits? We need translate
those into something closer to BASIC.

The finish switches pulse low (0) briefly as a
car crosses the finish line. The status bits must
change from high to low when the corresponding
finish switch pulses. The tricky part is that
while the finish switch may return high, the
status bit must remain low after the car has
finished. We need the logic equivalent of a trap
door that can go from 1 to 0, but not from 0 to 1.

Sounds like a job for AND (&).
In column 14 (available from the N&V

Internet library) we discussed the Boolean logic
operators, including AND. Here’s how AND
works:

AND (symbol: &)

first bit second bit result
0 0 0
0 1 0
1 0 0
1 1 1

AND is just the trap door we need. During the
race, a car’s status bit is 1 and its finish switch
is 1. AND ’em together and you get 1. Write that
back into the status bit. When the car crosses
the finish line, the status bit is 1 and the finish

switch is 0. 1 AND 0 = 0, which goes back into
the status bit. Now the car is officially out of the
race. After the car is completely across the finish
line, the status bit is 0 and the finish switch
returns to 1. 0 AND 1 is still 0, so the status bit
remains correct.

That leaves just the final detail of determining
when the race is over. Our pseudocode shows
this as a compound If...Then instruction
combining the states of the three status bits.
Maybe this can be simplified, too.

Although PBASIC lets us use individual bit
variables, those bits are also accessible as
portions of a byte variable. For example bit0,
bit1, and bit2 can be addressed individually, or
as the lowest three bits of the byte variable b0.
There are eight possible states for those three
bits, and all we need to do is identify one of
them—the case in which all three bits are 0. If
we ignore the other five bits of b0, when those
bits are 0 the byte b0 is 0. So that complicated
If...Then can be reduced to IF b0 = 0 THEN...
provided we can clear the upper five bits of b0.

Once again we can call upon the bit-clearing
power of AND. If we AND b0 with a number
that has 0s in the upper five bits and 1s in the
lower three bits, we can zero out the bits that we
want to ignore.

And that’s all we need to form the core of the
race-timing application. See listing 2 for a demo.

Next time we’ll clear up the loose ends of
converting our race times to units and
displaying race results.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton
Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; Internet http://www.parallaxinc.com.

The Grayhill keypad is available from Digi-
Key, Digi-Key, 701 Brooks Avenue South, PO
Box 677, Thief River Falls, MN 56701-0677;
phone 1-800-344-4539, fax 218-681-3380, net
http://www.digikey.com.

Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; Internet archive (catalog, user
manuals, samples) located at ftp.nutsvolts.com
in directory /pub/nutsvolts/scott; e-mail
72037.2612@ compuserve.com.

Stamp Applications no. 22, December 1996

5

Listing 1. BS2 Program to scan a 16-key matrix keypad
' Program: KEYP.BS2 (Scan a 16-key matrix keypad)
' This program shows how to scan a 4x4 matrix
' keypad using a BASIC Stamp II (BS2). A subroutine
' scans the keypad when it is called. On return, a
' flag bit (press) will contain a 1 if a key was
' pressed, and a nibble variable (key) will contain
' the key number (0-15). Once the program has
' responded to a key press, it must clear the
' press bit to prevent multiple actions triggered
' by the same key press. In a similar way, the
' keyScan subroutine uses another bit, db, to
' avoid responding to a key press until the key
' previously pressed has been released.

db var bit ' Debounce bit for use by keyScan.
press var bit ' Flag to indicate keypress.
key var nib ' Key number 0-15.
row var nib ' Counter used in scanning keys.
cols var INB ' Input states of pins P4-P7.

' Demo loop. Waits for press to indicate a keypress, then
' displays the key on the debug screen. Note that that
' this code clears the press bit when done in order to
' prepeare for the next press.

again:
 gosub keyScan
 if press = 0 then again
 debug "key pressed = ", hex key,cr
 press = 0
goto again

' ==================== KEYPAD SUBROUTINE ====================
' This code scans a 0 across the row connections of the keypad,
' then looks at the column nibble to see if that 0 has shown up
' on any of those bits. If the column bits are all 1s, then
' no key is pressed. If a column bit is 0, then a key is pressed
' at the intersection of the current row and that column.
keyScan:
for row = 0 to 3 ' Scan rows one at a time.
 low row ' Output a 0 on current row.
 key = ~cols ' Get the inverted state of column bits.
 key = NCD key ' Convert to bit # + 1 with NCD.
 if key <> 0 then push ' No high on cols? No key pressed.
 input row ' Disconnect output on row.
next ' Try the next row.
 db = 0 ' Reset the debounce bit.
return ' Return to program.

Stamp Applications no. 22, December 1996

6

push:
 if db = 1 then done ' Already responded to this press, so done.
 db = 1: press = 1 ' Set debounce and keypress flags.
 key = (key-1)+(row*4) ' Add column (0-3) to row x 4 (0,4,8,12).

' Key now contains 0-15, mapped to this arrangement:
' 0 1 2 3
' 4 5 6 7
' 8 9 10 11
' 12 13 14 15
' A lookup table is translates this to match the actual
' markings on the key caps.

 lookup key,[1,2,3,10,4,5,6,11,7,8,9,12,14,0,15,13],key
done:
 input row ' Disconnect output on row.
return ' Return to program.

Stamp Applications no. 22, December 1996

7

Listing 2. BS1 race timer (BASIC for Bewginners)
' Program RACE1.BAS (Prototype three-lane race timer)
' This program shows how the BS1 (or Counterfeit) can
' be used to time a three-lane Pinewood Derby race
' without complicated IF..THEN programming. This
' program is a prototype; when the race is over it
' displays raw data on the PC screen via Debug. Later
' versions will convert the data to units (fractions of
' a second) and display them on a freestanding display.

SYMBOL time1 = w2 ' Word variable for lane-1 time.
SYMBOL time2 = w3 ' Word variable for lane-2 time.
SYMBOL time3 = w4 ' Word variable for lane-3 time.

SYMBOL start = pin7 ' Start-switch on pin 7; 0=start.

SYMBOL status1 = bit0 ' Status of lane 1; 1=racing, 0=done.
SYMBOL status2 = bit1 ' Status of lane 2; 1=racing, 0=done.
SYMBOL status3 = bit2 ' Status of lane 3; 1=racing, 0=done.
SYMBOL stats = b0 ' Byte variable containing status bits.

stats = %111 ' All cars in the race to begin.

hold:
if start =1 then hold ' Wait for start signal.

timing: ' Time the race.
 stats = stats & pins & %111 ' Put lowest 3 pin states into stats.
 if stats = 0 then finish ' If all cars done, then race over.
 time1 = time1 + status1 ' If a car is in race (status=1) then
 time2 = time2 + status2 ' increment its timer. If it's done
 time3 = time3 + status3 ' (status=0) don't increment.
goto timing ' Loop until race over.

finish:
 debug cr,"Checkered flag!",cr ' Race over.
 debug time1 ' Display results.
 debug time2
 debug time3

