
AN257
DTMF Detection Using PIC18 Microcontrollers
INTRODUCTION

This application note describes a new method for
decoding Dual Tone Multifrequency (DTMF) signals
using the PIC18 family of PICmicro® microcontrollers.
DTMF signals, popularly known as “Touch Tone”, are
used for a wide variety of applications in modern tele-
phony. DTMF provides a fast and reliable method for
dialing.

This application note explains the concept of decoding
DTMF signals using a PICmicro microcontroller (MCU)
by providing a reusable library module for DTMF detec-
tion, which can be used as a building block for a variety
of Telecom applications.

The objectives of this application note are:

• Meet all or most of the DTMF requirements
• Use minimal resources

• Create a simple and flexible system

DTMF OVERVIEW

Initially, the Pulse method was used for telephone
dialing. This method works by actually disconnecting or
hanging up the telephone line at specific intervals.
Because dialing information cannot travel across the
telephone line, Pulse dialing is quite slow and dialing
information is limited between the switching office and
the telephone equipment. To overcome these limita-
tions, another dialing method using push button dialing
was developed. This method is known as DTMF, or
more popularly, “Touch Tone”.

DTMF uses audio frequencies to transfer dialing infor-
mation. The DTMF signal consists of two simultaneous
sinusoidal signals. The audio frequencies are divided
into two groups: Low Group and High Group. The
DTMF signal is created by taking one frequency signal
from each group and combining them.

DTMF tone frequencies have been chosen so that har-
monics are avoided (frequencies do not fall in another
DTMF frequency range), no frequency is the multiple of
another, and in no case, does the sum or difference of
two frequencies result in another DTMF frequency.
Table 1 shows DTMF frequencies for each digit.

TABLE 1: DTMF FREQUENCIES

The actual DTMF signal may look something like the
waveform shown in Figure 1 and can vary greatly
depending on the frequency, phase and amplitude of
each component frequency.

FIGURE 1: DTMF WAVEFORM

Author: Gaurang Kavaiya
Microchip Technology Inc.

High Group Frequencies
Nominal Frequency in Hz

1209 1336 1477 1633

L
o

w
 G

ro
u

p
 F

re
q

u
en

ci
es

N
o

m
in

al
 F

re
q

u
en

cy
 in

 H
z 697 1 2 3 A

770 4 5 6 B

852 7 8 9 C

941 * 0 # D

Note: The shaded column (A, B, C, D) is not normally
found on a telephone.
© 2005 Microchip Technology Inc. DS00257A-page 1

AN257
DTMF SPECIFICATIONS

The International Telecom Union (ITU) has defined
some specifications and requirements for the DTMF
detector. If a detector meets all ITU requirements, it is
considered an excellent detector that can work with a
variety of real world conditions. The following are some
of the major requirements for a DTMF detector.

Frequency Requirements

The DTMF frequency requirements are specified as:

• Maximum accepted frequency offset: 3.5%
• Minimum rejected frequency offset: 1.5%

If one or both of the DTMF frequencies are outside the
±3.5% range of the nominal frequency, then the detec-
tor should reject it. If both of the DTMF frequencies are
within the ±1.5% range of the nominal frequency, then
the detector should accept them.

Power Level Requirements

The DTMF detector should accept the signal if per
frequency power is ≥ -25 dBm and ≤ 9 dBm. It should
reject the DTMF signal if any frequency power is
≤ 55 dBm.

Twist Requirements

The DTMF Twist requirements are specified as:

• Forward: 8 dB
• Reverse: 4 dB

The difference in the power of the two DTMF frequen-
cies is called Twist. The DTMF receiver should accept
signals when the power of the High Group frequencies is
between (L + 4) dBm and (L – 8) dBm, where L is the
power of the frequency from the Low Group frequencies.

Timing Requirements

The DTMF signal timing requirements are specified as:

• Minimum accepted tone length: 23 mS
• Maximum rejected tone length: 40 mS

• Minimum pause time: 40 mS

The DTMF detector should accept DTMF signals when
the signal duration is ≥ 40 mS. It should reject the
DTMF signals when the signal duration is ≤ 23 mS. The
DTMF detector may either accept or reject the DTMF
signals when the signal duration is between 23 mS and
40 mS. A DTMF receiver should accept the DTMF
signals with inter-digit intervals ≥ 40 mS.

Signal-to-Noise Ratio Requirements

The DTMF detector should work with a Signal-to-Noise
Ratio (SNR) as low as 23 dB; however, there are other
parameters that can determine the performance of the
DTMF detector.

Guard-Time Test

A Guard-Time test is defined as the minimal length, or
the shortest tone bursts, that can be reliably detected
by the detector.

Talk-Off Test

It is possible that a voice signal can occur with DTMF
signals. The ability of the detector to reject normal
voice signals and accept the DTMF signal is tested in
the Talk-Off test.

THEORY

There are a variety of methods available to decode
DTMF signals. The most basic method involves the use
of eight narrow band-pass filters tuned at each DTMF
frequency.

Because of the complex nature of DTMF signals,
decoding them in software involves converting them
into a frequency domain for analysis. This process
requires considerable computational power to convert
a signal into a frequency domain. The most common
method uses Discrete Fourier Transform (DFT) for
analysis.

When frequency spectrum analysis is required only at
certain frequencies, DFT provides a better solution
compared to other software algorithms. At minimal
performance, the DFT method requires considerable
computational power. Therefore, DTMF decoding is
considered a Digital Signal Processor (DSP) domain
application. Typically, 8-bit microcontrollers do not have
considerable computing capability, so implementing
this kind of algorithm on an 8-bit microcontroller will use
all of the available computational resources.

One of the main objectives of this application note is to
find an alternative for achieving frequency spectrum
conversion without sacrificing too many resources.
Before discussing alternate methods, it is important to
understand the behavior of traditional methods.
DS00257A-page 2 © 2005 Microchip Technology Inc.

AN257
Fourier Transform Theory

Jean Baptiste Fourier showed that any signal or wave-
form could be made up by adding together a series of
pure tones (sine waves) with appropriate amplitude
and phase. Fourier’s theorem assumes that sine
waves of infinite duration are added.

The frequency spectrum has two axes: frequency and
energy. The energy at a particular frequency is
represented by an energy bar at that point. The Fourier
Transform (FT) provides details on amplitude, phase
and frequency of pure tones required to create a partic-
ular signal. Because each pure tone represents one
frequency in spectrum and its amplitude provides the
energy details, the Fourier Transform method (see
Equation 1) provides the spectrum of the signal.

EQUATION 1: FOURIER TRANSFORM

Where Time Domain definitions are:
• x(t) is complex, continuous and non-periodic

• t runs from -∞ to +∞

The Frequency Domain definitions are:
• X(ω) is complex, continuous and non-periodic
• ω runs from -∞ to +∞

The Fourier Transform is a mathematical formula using
integrals, while the Discrete Fourier Transform (DFT)
shown in Equation 2, is a discrete numerical equivalent
using sums instead of integrals.

EQUATION 2: DISCRETE FOURIER
TRANSFORM

Where Time Domain definitions are:
• x[n] is complex, discrete and periodic
• n runs over one period from 0 to N – 1

The Frequency Domain definitions are:

• X[k] is complex, discrete and periodic
• k runs over one period from 0 to N – 1

To better understand how DFT works, the formula can
be simplified using Euler’s formula:

 W = with

where W is the kernel function. The resulting formula is
shown in Equation 3.

EQUATION 3: SIMPLIFIED DFT

With the formula simplified, it is apparent that if the N
number of periodic samples is multiplied by sine waves
and cosine waves, a single complex number is
returned as the result. The magnitude of this number
will provide the energy at analysis frequency. Because
DFT is discrete in nature, it is used to analyze the
energy at analysis frequency. Therefore, to calculate
DFT at one frequency, multiply the signal with the sine
and cosine waves at the analysis frequency. The
magnitude of the result provides the energy at this
frequency.

It is obvious from the formula that a tremendous
amount of computational power is required, and
because of that reason, it is typically considered a DSP
domain application. Attempting to implement this logic
on an 8-bit microcontroller may end up using all the
resources of the 8-bit microcontroller for basic function-
ality. As previously mentioned, one of the goals of this
application note is to find a better alternative to
calculate DFT, which will require very little computa-
tional power. Therefore, let’s review the fundamentals
of DFT to find an alternate solution.

DFT Fundamentals

DFT uses one property of sinusoidal called orthogonal-
ity. If sinusoidals are orthogonal, which means if two
sinusoidals of the same frequency are multiplied, this
can result in high amplitude. If they are of different
frequencies, this results in a lower or zero amplitude.
Now the question is, can the same functionality be
obtained with a square wave? Square waves are digital
signals, while sinusoidals are analog signals. Because
sinusoidals are analog, an A/D Converter is needed to
convert them to a digital signal, which based on the
resolution of the A/D Converter, can result in a very
large computation. Square waves are a 1-bit value so
the multiplication result will be a smaller number.

X ω() 1
2π
------ x t()e

∞–

∞

∫= -jωt dt

X k[] 1
N
---- x n[]e

n 0=

N 1–

∑= j2πk
n
N
----–

N
nkje π2− () ()N

nkjN
nk ππ 2sin2cos +

[] [] () ()()N
nkjN

nknx
N

kX
N

n

ππ 2sin2cos*
1 1

0

+= ∑
−

=

© 2005 Microchip Technology Inc. DS00257A-page 3

AN257
If we again look at the DFT formula in Equation 3, it is
important to understand the effect of using a square
wave in practical applications. Finding a DFT, or the
energy at a particular frequency, requires multiplying
the signal using the sine and cosine reference signal of
analysis frequency. The signal will be sampled for n = 0
to n = N – 1 and the instantaneous value of the signal
and kernel are multiplied to find the instantaneous
result. The summation (Σ) of each result provides the
total signal energy. In this instance, we need to convert
the incoming signal into a square wave, which is equiv-
alent to a 1-bit A/D conversion. Therefore, we will use
a square wave reference signal and sample.

Let’s analyze the DFT formula with a square wave. For
simplicity, only the real part will be considered.

According to the formula shown in Equation 4, we need
to multiply N points of the signal with the cosine refer-
ence signal of the analysis frequency to calculate the
real part of DFT.

EQUATION 4: DFT REAL PART
CALCULATION FORMULA

FIGURE 2: DFT USING SQUARE WAVE

Assuming a case of N = 4, Figure 2 shows the DFT
calculation process for a square wave.

As seen in Figure 2, the DFT calculation using a square
wave with a 1-bit resolution is much simpler than using
sine waves.

If both square waves have a positive value, the multi-
plication result will be positive. If one of the signals is
negative, the result will be negative, and if both are
negative, then the result will be positive. To summarize,
if both square waves have the same value, then the
result will be a larger number; otherwise, it will be a
smaller number. However, multiplication can be
replaced by a simpler digital function for a square
wave. For simplicity of digital analysis, a square wave
can be represented by ‘0’ and ‘1’ instead of ‘1’ and ‘-1’.
The multiplication can be achieved by a simpler
exclusive nor function.

Simplified DFT Implementation

The DFT process shown in Figure 2 can be modified to
replace one bit signed multiplication to simplify the
implementation, while Figure 3 best explains the
method of finding a DFT.

[] [] ()()N
nknx

N
kX

N

n

π2cos*
1

Re
1

0
∑

−

=

=

0 1 2 3

+1

+1

-1

-1

*

Actual
Signal

x[n]

Ref. signal

n =

()N
nkπ2cos

[] ()()N
nknx

N

n
π2cos*

–1

0
∑

=

(-1)

*
(-1)

(+1)

*
(+1)

(-1)

*
(-1)

(+1)

*
(+1)

+ + += = 4
DS00257A-page 4 © 2005 Microchip Technology Inc.

AN257
FIGURE 3: CASE 1: ACTUAL SIGNAL MATCHES THE REFERENCE SIGNAL

FIGURE 4: CASE 2: ACTUAL SIGNAL DOES NOT MATCH THE REFERENCE SIGNAL

The actual signal (after 1-bit A/D conversion) is
sampled at a fixed sampling frequency. At the sampling
point, the actual signal is compared with the reference
signal of the analysis frequency. If both of the square
waves match, the energy match counter is
incremented. If there is a mismatch, then the same
counter is decremented. This gives the effect of multi-
plying the square wave signal with two states of ‘1’ and
‘-1’. Implementing this on an 8-bit microcontroller is
very simple. The timer resource can provide the
interrupt at the sampling frequency.

In the interrupt handler, we need to compare the bit
value of the reference signal and the actual signal.
Depending on the status of the two signals, we need to
either increment or decrement the counter. Based on
these requirements, it is very easy to implement DTMF
using a 1-bit DFT on an 8-bit PICmicro microcontroller
without using excessive resources.

Orthogonality of Simplified DFT

Figure 3 shows the first test case for DFT, where the
actual signal matches the reference signal. The basic
requirement for orthogonality is that we should get a
higher magnitude when the actual signal matches the
reference signal and we should get a lower amplitude
for a mismatch. Figure 4 shows the second test case
for mismatch. This proves that square waves are
orthogonal. If you look at the Fourier theorem, it states
that a square wave can be constructed using a sine
wave, so this result is to be expected.

It would seem that the system described so far satisfies
the requirements for DFT; however, there is still one
major drawback. If the actual signal is out-of-phase
compared to the reference signal, then the existing
system will provide lower amplitude for some phase
mismatch conditions, as illustrated in the third test case
(Figure 5). Because the phase of the incoming signal
can not be guaranteed, the DFT system must be
insensitive to phase change.

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 = 14

Ref. Signal

Actual Signal

+1 +1 -1 -1 -1 -1 +1 -1 +1 +1 -1 -1 -1 +1

Ref. Signal

Actual Signal

= -2
© 2005 Microchip Technology Inc. DS00257A-page 5

AN257
FIGURE 5: CASE 3: ACTUAL SIGNAL IS OUT-OF-PHASE TO REFERENCE SIGNAL

Again, the solution for this problem lies in the DFT for-
mula. The DFT formula uses both sine and cosine
waves for multiplication. The signal is multiplied with
both sine and cosine signals and the resultant sum
value is used for analysis. Therefore, the fourth test
case shown in Figure 6, analyzes the out-of-phase
actual signal with the sine and cosine references.

FIGURE 6: CASE 4: USING SINE AND COSINE REFERENCE

In this case, the actual signal is sampled at a fixed sam-
pling frequency. At the sampling point, the actual signal
is compared with both of the reference signals of the
analysis frequency. If the reference signals and sample
frequency match, the particular energy match counter
is incremented; if there is a mismatch, the same
counter is decremented. At the end of the sampling
period, unsigned addition of the two reference match
counter values is performed to find the final match

counter value. This computation provides the energy at
analysis frequency, which gives the effect of multiplying
the actual signal with the sine and cosine reference sig-
nals (where each signal has two states of ‘1’ and ‘-1’).
It is apparent from Figure 6 that this method is
insensitive to phase error.

-1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 +1 -1 +1

Ref. Signal

Actual Signal

= 0

+1 -1 +1 -1 +1 -1 +1 +1 +1 +1 +1 +1 -1 +1

Sine Ref. Signal

= 14

Cos Ref. Signal

Actual Signal

-1 +1 +1 +1 +1 +1 +1 -1 +1 -1 +1 +1 +1 +1 = 8

= 6

+

DS00257A-page 6 © 2005 Microchip Technology Inc.

AN257
Simplified DFT Limitations?

We now have an alternative to DFT that does not
require too much computation power; however, this
method also suffers from some limitations similar to
normal computed DFT, as well as a few additional
limitations.

Like a normal DFT, the sampling frequency is important
for this method. The best result can be obtained only
with a sampling frequency that is based on a specific
input frequency. As in the case of a DFT, where all com-
ponent frequencies are predefined, it is possible to find
an optimized sampling frequency that will give
minimum error for all component frequencies.

An FT assumes that the signal is periodic and of infinite
duration. In a practical case, we do not sample the sig-
nal for an infinite duration. The signal is sampled for a

finite duration called a “window period”. The FT
assumes that this signal is periodic all of the time. This
can create a problem in certain cases.

Upcoming sections use the following terminology to
explain DFT:

• Sampling Frequency = Fs = How often the
waveform is sampled

• Sampling Period = 1/Fs
• Sample Window = Window Period = Time

duration for the waveform sampling

If a window period is an integer multiple of a signal
period, then the integer number of cycles fits in the
window period and the signal seen by FT matches the
original signal. This test condition is illustrated in
Figure 7.

FIGURE 7: CASE 1: SIGNAL PERIOD IS INTEGER MULTIPLE OF SAMPLE PERIOD

Real signal is periodic,
but FFT only sees small
portion of it.

This is what FFT sees.
The signal period fits the
sample window.

Therefore, the signal seen
by FFT matches the original
signal. The spectrum shows
narrow-band, high energy
at signal frequency.

(a)

Spectrum
E

f

© 2005 Microchip Technology Inc. DS00257A-page 7

AN257
If the window period is not an integer multiple of the sig-
nal period, then the integer number of cycles will not fit
in the window period. In this case, FT assumes that the
signal is repeating at the end of the window period,
which creates discontinuity in the signal seen by FT
and it will not match the original signal. This test
condition is illustrated in Figure 8.

FIGURE 8: CASE 2: SIGNAL PERIOD IS NOT AN INTEGER MULTIPLE OF SAMPLE PERIOD

This creates a problem in spectrum analysis. There is
a direct relationship between the duration of signal and
its frequency spectrum. Short signals have broad
frequency spectra and long signals have narrow
frequency spectra. The glitch in signal creates a
broader spectrum. These ‘glitches’ are short signals;
therefore, they have a broad frequency spectrum.
Moreover, this broadening is superimposed on the
frequency spectrum of the actual signal, which creates
a secondary energy peak, or side lobes in frequency
spectrum.

The solution for this problem is to ensure the smooth
matching of the beginning and end section of the win-
dow period. The simplest way to do this is to make
them zero to end in smooth matching. DSP uses a
method called “windowing”, where the input signal is
multiplied by the window function, which ensures
smooth matching.

Use of the window function involves complex computa-
tion. Since one of the main goals of this application
note is to reduce the resources, and we have
discussed an alternative for compute intensive DFT, it
makes sense to find an alternative to the window
function.

In the case of DTMF, frequency values are already
known, so it is possible to find an optimum sampling
period that gives minimum error with most of the fre-
quencies. Another advantage occurs from 1-bit DFT.
Because the resolution of the incoming signal is 1 bit,
the maximum possible truncation is only 1 bit. The 1-bit
truncation results in fewer errors than higher truncation
in the case of sinusoidals. Therefore, we have a cheap
solution for a 1-bit DFT-based system. Now we need to
find the optimized window period, which will give
minimum error for 1-bit DFT-based analysis of DTMF
frequencies. The DTMF detection simulator PC
software provides a tool to find the optimized frequency
and window period.

Now that we have a solution for DFT and windowing,
the question of how good 1-bit DFT really is arises. Can
this solution meet the frequency band specification for
DTMF? Unfortunately, the answer is no. Because 1-bit
DFT provides a wideband response, it is not possible to
meet this requirement without some modification in the
algorithm.

Real signal is periodic,
but FFT only sees
small portion of it.

This is what FFT
sees. The signal
period doesn’t fit
the sample window.

Therefore, the signal seen by
FFT doesn’t match the
original signal and FFT works
if it has seen the bottom signal.
This results in broader spectrum
and side lobes.

(b)

Spectrum
E

f

DS00257A-page 8 © 2005 Microchip Technology Inc.

AN257
Let’s analyze the method to meet the frequency band
requirement by creating some test cases to understand
the effect of the frequency change on match counters
(energy value).

All test cases use the following DTMF decoder system:

• Sampling frequency: 8 kHz
• Sampling period: 16 mS

• SNR: 40 dB

TEST CASE 1:

Test frequencies are the same as DTMF nominal
frequencies.

Test conditions:

LowBand= 770.0 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 100.0

Match (Energy) counter values:
697.0 = 26 1209.0 = 66
770.0 = 68 1336.0 = 10
852.0 = 04 1477.0 = 00
941.0 = 12 1633.0 = 42

TEST CASE 2:

One test frequency is lower (by 5%) than the DTMF
nominal frequency.

Test conditions:
LowBand= 731.5 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 100.0

Match (Energy) counter values:
697.0 = 46 1209.0 = 62
770.0 = 44 1336.0 = 06
852.0 = 08 1477.0 = 08
941.0 = 12 1633.0 = 18

TEST CASE 3:

One test frequency is higher (by 5%) than the DTMF
nominal frequency.

Test conditions:
LowBand= 808.5 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 100.0

Match (Energy) counter values:

697.0 = 06 1209.0 = 78
770.0 = 44 1336.0 = 02
852.0 = 24 1477.0 = 04
941.0 = 20 1633.0 = 26

For all test cases, the match counter value provides
energy information of the analysis frequency at nominal
DTMF frequencies. A typical DTMF decoding algorithm
will find the dominant frequency (nominal frequency
with maximum counter value) in each group to find the
DTMF character. The dominant frequency energy
value needs to be higher than some threshold (e.g., 20)
to reject the invalid frequencies.

By looking at the data from all three test cases (mainly
Low Group), we can see that for two test cases, the
dominant frequency is 770 Hz, and for another case, it
has almost the same value as 697 Hz (Case 2). For all
test cases, the dominant frequency amplitude is much
higher than threshold. For Test Cases 2 and 3, the Low
Group frequency is out of specification, but we are still
detecting it as a valid character.

Based on the above analysis, we can say that the
energy counter value follows normal DFT band. For
example, if the test frequency is the same as the
analysis frequency, higher energy will result. As the test
frequency moves away from the analysis frequency, the
energy value decreases. The rate of decrease depends
on the bandwidth of the DFT response. If the response
is wideband, then the energy value will decrease at a
lower rate. The other parameter that affects the energy
value is Twist. In the case of forward Twist, the High
Group energy will be more than that of the Low Group.

Simplified DFT Band Definition

These test cases prove that a 1-bit DFT provides a
wideband response and it cannot be used for DTMF
decoding unless we have a method to create a narrow-
band. The simplest solution is to compare the energy
with some threshold and reject it if the value is less then
the threshold.

If we want to meet the DTMF frequency requirement,
then we should be able to reject the DTMF signal for Test
Cases 2 and 3. If we plan to use the threshold method,
then we will need a threshold value of around 50 for
770 Hz (we may need a little higher value if we plan to
reject the frequency with an error of 3.6%). However, this
creates a problem for the DTMF Twist specification.

Let’s examine a test case for this.

TEST CASE 4:

Test frequencies are the same as the nominal DTMF
frequency with 4 dB Reverse Twist.

Test conditions:
LowBand= 770.0 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 160.0

Match (Energy) counter values:

697.0 = 10 1209.0 = 94
770.0 = 40 1336.0 = 10
852.0 = 00 1477.0 = 08
941.0 = 04 1633.0 = 46
© 2005 Microchip Technology Inc. DS00257A-page 9

AN257
If we use a threshold rejection method, then we may
use a threshold value of around 50 for 770 Hz. This will
result in rejection of the above signal. If we look at the
frequencies of both of the signals, then they are a valid
frequency with a valid Twist. According to the DTMF
specification, the detector should accept the above sig-
nal. Therefore, we may not be able to meet all of the
DTMF requirements with this threshold detection
method and we need to find an alternate method. If we
try to plot the spectrum behavior of a 1-bit DFT, then it
might look something like Figure 9.

The 1-bit DFT provides a wideband spectrum that may
look something like a bell curve. The DTMF frequen-
cies are separated at approximately 10% range. This
will create an overlapped bell curve spectrum as shown
in Figure 9.

FIGURE 9: 1-BIT DFT SPECTRUM

If the input frequency is in the center of this curve, we
may get a higher amplitude. As the frequency moves
away from center, the energy for that band decreases;
however, the energy level of that particular sideband
increases. If the test frequency is in the center of two
analysis frequencies, then the energy level at both
analysis frequencies will have almost the identical
value. As the test frequency moves towards one of the
analysis frequencies, the energy level for that
frequency increases and it decreases for the other
analysis frequency. If we find the difference between a
nominal frequency and it’s sideband, then we can
determine the shift from center, which helps us in
achieving the narrow-band response.

It is difficult to find a simple generic formula to calculate
the shift from center that can meet all of the DTMF
requirements. The easiest solution is to add two side-
band analysis frequencies for each nominal frequency
in such a way that if a frequency moves away from pass
band, then the sideband frequency amplitude will be
higher than the nominal frequency. The spectrum
shown in Figure 9 still holds true, but both sideband fre-
quencies are not valid DTMF frequencies. In this case,
if the test frequency shows a higher amplitude than any
of the sideband frequency amplitudes, then it should be
rejected as it is outside the pass band. This helps in
defining the narrow-band response. The sideband fre-
quency selection is critical to achieving the desired
band response. The band definition logic works in the
following way:

• Add the value of the maximum detection range
(Pass Band) and minimum rejection range
(Stop Band). For example, for DTMF signals, it
will be 1.5% + 3.5% = 5.0%. We need to add two
sideband analysis frequencies at ±5.0% of the
nominal DTMF frequency.

• Analyze both of the sideband frequencies for
each center frequency. If one of the sideband
frequencies has a higher amplitude, then reject
the test frequency.

For DTMF analysis, we need to analyze eight center
frequencies. This will require analysis of 16 sideband
frequencies. Therefore, we need to find a 1-bit DFT for
24 analysis frequencies. This 1-bit DFT takes consider-
ably less computation time than a conventional DFT.
However, to achieve a very efficient system, we need
to reduce this consumption. The actual algorithm is
implemented in the following way.

• Find the dominant frequency (Nominal Frequency
with Maximum Energy) in each group. These are
the dominant Low Group and High Group
frequencies in the DTMF signal.

• Analyze each dominant frequency with their side-
bands. If any of the sideband amplitudes is higher
than the dominant frequency, then reject it. It is
not meeting the DTMF frequency requirements.

Let’s revisit Test Case 2 and analyze its performance
with the new algorithm and check it with a tighter
specification.

f

E

DS00257A-page 10 © 2005 Microchip Technology Inc.

AN257
TEST CASE 5:

One test frequency is deviated by only -3.6% from the
nominal DTMF frequency.

Test conditions:
LowBand= 742.3 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 100.0

Match (Energy) counter values:
697.0 = 22 1209.0 = 62
770.0 = 64 1336.0 = 02
852.0 = 08 1477.0 = 04
941.0 = 04 1633.0 = 18

The Low Group dominant frequency is 770 Hz and the
High Group dominant frequency is 1209 Hz. Now, we
need to analyze the sidebands for these two frequencies:

732.0 = 102 1149.0 = 08
809.0 = 24 1269.0 = 12

For High Group, both sideband values are lower than
the nominal frequency. Therefore, we have a valid High
Group frequency. For Low Group, the -5% sideband at
732 energy (102) is higher then nominal frequency
770 energy (64). This means the Low Group frequency
is out of specification and we need to reject this DTMF
signal because it does not meet frequency require-
ments. This explains how the sideband logic helps in
precisely defining the pass band. This logic works very
well for band definition, regardless of the Twist. Let’s
revisit Test Case 4 to prove this point.

TEST CASE 6:

Test frequencies are the same as the nominal DTMF
frequency with a 4 dB Reverse Twist.

Test conditions:
LowBand= 770.0 HighBand= 1209.0
PhaseL = 0.0 PhaseH = 0.0
AmpL = 100.0 AmpH = 160.0

Match (Energy) counter values:

697.0 = 10 1209.0 = 94
770.0 = 40 1336.0 = 10
852.0 = 00 1477.0 = 08
941.0 = 04 1633.0 = 46

The Low Group dominant frequency is 770 Hz and the
High Group dominant frequency is 1209 Hz. Now, we
need to analyze the sidebands for these two frequencies.
732.0 = 34 1149.0 = 12
809.0 = 16 1269.0 = 04

Both sideband values are lower than their nominal
frequency. Therefore, they will be accepted as a valid
DTMF tone.

It is obvious from the previous examples that the above
logic will considerably reduce the 1-bit DFT computa-
tion requirement. Now, we need to analyze 8 nominal
frequencies and only 4 sideband frequencies. This
makes a total of 12 analysis frequencies.

Another major issue in implementation of 1-bit DFT is
the reference signal for all analysis frequencies.
According to our logic, we need to calculate a 1-bit DFT
for all center frequencies and analyze the sidebands of
the dominant frequency. In this case, we need to create
a reference signal for all nominal DTMF frequencies
and their sidebands. One solution is to create a
reference signal dynamically. This again, will require
considerable computation power. Another solution is to
precalculate the reference signal value and store it in
program memory. Because we need only a 1-bit DFT,
the reference signal needs to have a 1-bit value for all
of the analysis points. The sampling frequency and
period will decide the number of analysis points or total
number of bit values for the reference signal. If we use
a sampling frequency of 8 kHz and a period of 16 mS,
then it will require 128 points or a 128-bit reference
signal (reference table). The minimum resolution in
program memory is one byte, so 16 bytes of program
memory are required for one reference signal.

The advantage of precalculating the reference signal is
that it considerably reduces the resource requirements.
The disadvantage is that it will take more program
memory space. Another major disadvantage is, since
the sampling frequency is precalculated, the system
must accurately maintain the sampling frequency. Any
major deviation from the precalculated sampling
frequency may produce catastrophic results. However,
as most of the microcontroller-based systems use a
crystal type oscillator, it is not difficult to achieve an
accurate sampling frequency using a timer.

Now, we have a solution to achieve a 1-bit DFT without
intense computation that can meet the DTMF fre-
quency requirements. If we look at the implementation
point, then we need to store the reference table for
8 nominal frequencies and 16 sideband frequencies.
With this in mind, can we reduce the analysis frequency
tables? Any savings will result in reduced consumption
of program memory. We need sideband frequencies at
±5.0% of nominal DTMF frequencies to achieve the
DTMF frequency requirements. If we look at the DTMF
frequencies, we can see that they are separated by
approximately a 10% difference. If we calculate the
required upper and lower sideband frequencies for all
nominal DTMF frequencies, then we can see that the
upper sideband frequency of one DTMF frequency
(731.85 Hz for 697 Hz) is almost the same as the lower
sideband frequency of another DTMF frequency
(731.5 Hz for 770 Hz). The difference between these
two sideband frequencies is negligible. We can afford
to have only one sideband frequency reference table to
decrease the code size. Column D in Table 2 shows all
of the nominal and sideband frequencies used for
analysis, which requires eighteen reference tables in
program memory.
© 2005 Microchip Technology Inc. DS00257A-page 11

AN257
TABLE 2: DTMF FREQUENCY CHART

Number

Nominal DTMF
Frequencies

Lower Sideband
Frequencies (-5%)

Upper Sideband
Frequencies (+5%)

Analysis
Frequencies

A B C D

1 697 662.15 731.85 662 (B1)

2 770 731.5 808.5 697 (A1)

3 852 809.4 894.6 732 (B2, C1)

4 941 893.95 988.05 770 (A2)

5 1209 1148.55 1269.45 809 (B3, C2)

6 1336 1269.2 1402.8 852 (A3)

7 1477 1403.15 1550.85 894 (B4, C3)

8 1633 1551.35 1714.65 941 (A4)

9 988 (C4)

10 1149 (B5)

11 1209 (A5)

12 1269 (B6, C5)

13 1336 (A6)

14 1403 (B7, C6)

15 1477 (A7)

16 1551 (B8, C7)

17 1633 (A8)

18 1715 (C8)
DS00257A-page 12 © 2005 Microchip Technology Inc.

AN257
MEETING THE DTMF SPECIFICATIONS

After discussing solutions for the major problems associ-
ated with DTMF decoding, let’s take another look at the
specifications to evaluate how well we are meeting them.

The proposed DTMF detection system is very flexible
to meet various resource-to-performance ratios;
typically, the higher the resources requirement, the
better the performance. Using the tools described in
this section, users can define the system that best
meets their requirement.

Described in this application note is a Windows®

operating system-based software program (DTMF
Detection Simulator) that works as a simulator for the
DTMF decoder algorithm. This software generates
synthesized DTMF signals for a variety of DTMF condi-
tions. This synthesized DTMF signal is analyzed by a
DTMF decoder algorithm (discussed in theory), that
provides various results for test conditions. This
program also generates a sine/cosine reference table
formatted according to firmware requirements (see
Appendix A: “DTMF Detection Simulator” “DTMF
Detection Simulator” for more information).

The optimized system uses the following parameters
that provide the best resource-to-performance ratio.

• Sampling frequency: 8 kHz

• Window period: 16 mS

Frequency Requirements

As previously discussed, sideband frequency analysis
is the method of choice for defining the detection band.
This method adequately meets the DTMF frequency
requirements.

Power Level Requirements

The power level requirement can be met by
implementing one of the following solutions.

One solution is to have enough sample points that can
generate enough energy (match counter value) for the
lowest required power level.

Another solution is to use basic threshold detection.
The energy counter value is compared with some
threshold energy value; if it is less than threshold, reject
it. This value will be much lower than the value required
to achieve the band definition with threshold limit.
Therefore, this will not create any problem with Twist or
other requirements.

Twist Requirements

This algorithm is not providing any direct control for Twist
requirements. It is indirectly met by the band definition
algorithm. Higher Twist in any direction will provide less
amplitude for one of the DTMF frequencies. If enough
points are used in analysis, then even the worst-case
energy will be sufficient for analysis.

The main requirement is to have enough energy value
to meet the frequency requirements. The selection of
the sampling frequency and period will determine the
Twist specifications of the system.

Timing Requirements

The frequency requirements are best met in frequency
domain, while timing requirements are best met in time
domain.

Typically, a DSP-based system analyzes the DTMF
timing requirement in frequency domain. Timing analy-
sis in frequency domain is difficult. It is possible to
implement a mechanism to analyze the timing
requirements in time domain for better accuracy.

During DTMF on-time, DTMF signals are present on
the telephone line and during off-time, there is no activ-
ity on the telephone line. An incoming DTMF signal is
converted to square wave for analysis. This conversion
will provide a pulse train during DTMF on-time and will
provide no pulses during DTMF off-time, which can be
considered as activity on a telephone line. We can use
an interrupt mechanism, along with a timer resource, to
measure the duration of activity or no activity. Because
this measurement is carried out in time domain, it can
provide very high accuracy based on the resolution of
the timer resource.

Signal-to-Noise Ratio Requirements

The DTMF system described thus far has a very good
SNR. Because we are using a 1-bit A/D Converter, the
noise signal needs to have sufficient amplitude in the
opposite direction of the DTMF signal to change the bit
level. If this amplitude coincides with the sampling
point, it can cause some error in measurement.

The probability for occurrence of all conditions being
met at the same time is low. If all conditions occur at the
same time, the energy value will be changed by one
count. This is very insignificant compared to typical
energy values and provides good SNR. Actual SNR of
the system will depend on the system used and
performance of the 1-bit A/D Converter.

Guard-Time Test

The detection time depends on the system used. The
worst-case detection time is quite good compared to
other systems. The optimized system has a detection
time of 16 mS, which is much less than the minimum
possible on-time (23 mS) for the DTMF signal.

Talk-Off Test

Typically, most of the voice signals do not meet the tim-
ing requirements. Therefore, an accurate timing check
takes care of most of the voice interference. See the
“Possible Improvements” section for additional
information on reducing voice interference.
© 2005 Microchip Technology Inc. DS00257A-page 13

AN257
IMPLEMENTATION

Hardware Setup

Figure 10 shows the hardware setup required for the
DTMF detector.

FIGURE 10: HARDWARE SETUP

Digital Access Arrangement (DAA) is an essential part of
any circuit involving telephone line interface. It handles
the telephone line interface, and meets all of the require-
ments of the specific country. DAA converts a balanced
2-wire signal to 4-wire for separate receive and transmit
output, and detects the ring and generates a signal to
indicate a ring. DAA also provides logic control for
generation of an on hook/off hook condition. Any
available DAA module can be used that meets a user’s
requirement. Users can also build their own DAA module
using discrete components; however, this will not be dis-
cussed since it is beyond the scope of this application
note.

Receiver (RX) output from DAA is fed to the Anti-
Aliasing Filter (Low-Pass Filter). This block is not
required for the operation of the DTMF detector;
however, it may improve the SNR of the system. As
explained in theory, the system does have good SNR,
but if a user still wants to improve it, this filter can be
used.

As shown in Figure 10, if an anti-aliasing filter is not
used, the output of RX will be fed directly to the zero-
cross detector. In this case, the zero-cross detector
works as a 1-bit A/D Converter, which is a very important
part of the system. We want to use a 1-bit A/D Converter
that is a sine wave to square wave converter. There are
various kinds of 1-bit A/D Converters available that can
do the same job.

Because signal amplitude for telephone lines can vary
greatly, most circuit blocks need some kind of Auto-
matic Gain Control (AGC) circuit; however, AGC usage
has some negative effects. One is that AGC is a
complex circuit block, which can increase cost and
complexity of the system; another is that it takes some
time to set the level of the input signal which eventually
increases the detection time. If we use a 1-bit A/D Con-
verter that does not require AGC, we can lessen the
detection time and reduce the cost of the system.

Let’s compare the performance of the three most
widely used 1-bit A/D Converters with variable
amplitude.

Telephone line

Anti-Aliasing Filter/
Low-Pass Filter

DAA Zero-Cross Detector PIC18

RX Optional
PORTB<7:4> pin/ Ext Int/

Capture I/P

Control

Signals

Tip

Ring MCU
DS00257A-page 14 © 2005 Microchip Technology Inc.

AN257
Figure 11 shows the performance of the zero-cross
detector with variable amplitude, which illustrates that
the signal amplitude variation does not change the duty
cycle of the signal. This provides an excellent 1-bit A/D
Converter for sinusoidal signals, since the zero-cross
detector is immune to amplitude change. This in turn,
eliminates the requirement of an AGC circuit in this
application.

FIGURE 11: ZERO-CROSS DETECTOR
PERFORMANCE

Figure 12 and Figure 13 show the performance of the
Schmitt Trigger and the comparator with variable ampli-
tude, which shows that signal amplitude variation
changes the duty cycle of the output signal. Depending
on the comparator level, or Upper Trip Point (UTP) and
Lower Trip Point (LTP), and signal amplitude, the
system may not produce any output for certain signal
levels. This makes the usage of an AGC circuit a
necessity.

FIGURE 12: SCHMITT TRIGGER
PERFORMANCE

Input

Input

Output

Output

UTP

UTP

LTP

LTP
© 2005 Microchip Technology Inc. DS00257A-page 15

AN257
FIGURE 13: COMPARATOR
PERFORMANCE

Based on the previous discussion, it seems that use of
a zero-cross detector as a 1-bit A/D Converter is the
best choice for this application. Users can build their
own zero-cross detector circuit; however, for reference
purposes, Figure B-1 in Appendix B: “Zero-Cross
Detector” shows the circuit diagram of the zero-cross
detector used for the test board. This circuit was built
using the Microchip op amp, MCP604, and uses a
single positive supply for the operation.

As discussed in theory, activity on a telephone line is
monitored to check DTMF timing requirements. Any
activity on the line is considered presence of signal,
while no activity on the line indicates the pause time. The
zero-cross detector generates pulses corresponding to
the input signal. This means if a signal is present on a
telephone line, pulses are generated as the output of the
zero-cross detector. The pulses generated by the zero-
cross detector are fed to the microcontroller, which can
be fed to any port pin for analysis in software. If a signal
is fed to a port pin, polling of that pin is required, which
may result in a demand for most of the computational
resources of the MCU. A better solution to this problem
is to use an interrupt, which can be done by feeding this
signal to one of three possible locations for analysis.

1. PORTB<7:4> pins: These pins generate an
interrupt-on-change event, which can generate
an interrupt on each edge of the signal.

The only problem with the PORTB change inter-
rupt is that read/write activity on PORTB can
result in a missed interrupt. This is acceptable
with the DTMF detector since this interrupt is
used only for timing measurement and it can
have high measurement resolution. Use of the
PORTB change interrupt also reduces the
resource requirement, since the remaining three
PORTB pins are still available to users.

2. External Interrupt: This pin will generate an
interrupt on each positive or negative direction
edge.

The only limitation to this approach is that only
one type of edge (only positive or negative
edges) can generate an interrupt. To generate
an interrupt on each edge, a circuit similar to
Figure 14 is needed, or firmware needs to mod-
ify the INT edge select bit to achieve an interrupt
on every edge.

FIGURE 14: EXTERNAL INTERRUPT
CIRCUIT

3. Capture mode: A Capture module can be used
just like an external interrupt, or with a captured
timer value. Firmware can modify the capture
configuration at each interrupt to generate an
interrupt on each edge, or the system can use a
circuit similar to Figure 14.

The current firmware version (V1.0) supports only a
PORTB change interrupt-based system. In the future,
for compatibility with other similar Telecom modules
(e.g., FSK detection), other methods may be
supported.

Comparator
Level

Comparator
Level

Delay

Depends on Min. Int.
Width Required by MCU

To Ext. Int of MCU
DS00257A-page 16 © 2005 Microchip Technology Inc.

AN257
FIRMWARE

The source code for the DTMF detector is designed to
achieve complete background operation using two
interrupts. It checks for the signal on a telephone line,
and samples it upon availability. It verifies all of the tim-
ing requirements and if all timing requirements are met,
it analyzes the sampled data for DTMF specifications.
If all of these conditions are met, the received character
is copied into a FIFO buffer.

The source code for the DTMF detector is designed in
general purpose library format, and supports most
devices in the PIC18 family of microcontrollers. The
firmware consists of the following files.

• DTMFDec.asm: Main file for DTMF Decoder
Firmware. This file contains all of the required
source code for the DTMF detector. Users should
include this file in their project.

• DTMFDec.inc: Include file that contains all of the
definitions required to use the DTMFDec.asm file.
Users should include this file in the source code
when they want to use DTMF detector functions.
This file also contains definitions of certain user-
defined DTMF parameters (compile-time options).
Users can change these parameters to modify
DTMF detector firmware to suit their
requirements.

• MainDef.inc: This file contains definitions of
some of the system related parameters and some
generalized RAM locations used for context
savings.

• P18xxx.inc: Generic include file for the PIC18
family of microcontrollers.

• Telecom.inc: This file contains all of the defini-
tions required to use different Telecom modules;
for example, DTMF detector, Telecom signal
generator, FSK detector and so on. Users should
include this file in their main source code only
after all module specific include files, and it should
be included only once in user code.

• DTMFDetT.asm: Test file to demonstrate usage
of DTMF detector module.

• DTMFDtMT.asm: Test file to measure MIPS usage
of DTMF detector module.

• DTMFTab.dat: This file contains sine/cosine
reference table for DTMF frequencies. This file is
generated by PC software based on the selection
of system parameters.

• DTMFSBT.dat: This file contains the sine/cosine
reference table for DTMF sideband frequencies
and is generated by PC software based on the
selection of system parameters.

The user should copy all of these files, with the
exception of DTMFDetT.asm, DTMFDtMT.asm and
DTMFdet.mcp (project files) into their project directory.
The user should create a project that utilizes a linker.
Add the DTMFDec.asm file in the project. Include the
DTMFDec.inc file in all source files that utilize the
DTMF detector module. Please refer to the
DTMFdet.mcp files for more information.

The user should call the ServiceTMR1Int function
from the high priority interrupt vector and it should be
the first function to provide highest priority to signal
sampling. Since this is a real-time application, sampling
must be done at the required interval. If any other
interrupt function has higher priority and it blocks the
system resources for a longer period, then the perfor-
mance of the DTMF detector may be affected. Users
should call the ServicePortBInt function from a low
priority interrupt vector.

Some of the context savings code is required in user
code. This is shown in the DTMFDetT.asm test file.
Context savings will be the same for many interrupt
service functions and keeping it in user code saves
program memory and RAM resources.
© 2005 Microchip Technology Inc. DS00257A-page 17

AN257
Compile-Time Options

The firmware provides some compile-time options to
modify the DTMF detector module to suit different
requirements. Example 1 shows four code portions of
the DTMFDec.inc file. Users can modify this file to
change the settings for the DTMF detector system.

EXAMPLE 1: DTMFDec.inc CODE PORTION

CODE SECTION 1

Users can modify the DTMF signal timing conditions in
Code Section 1. DTMF specifications define the mini-
mum accepted tone length (minimum on-time) of
23 mS and maximum rejected tone length (maximum
on-time) of 40 mS. This means if tone length is greater
than 40 mS, it must be accepted as a valid DTMF tone
length, and if tone length is less than 23 mS, it must be
rejected as a valid DTMF tone. Similarly, minimum
pause time (intercharacter period) is defined as 40 mS.

Because of the system’s excellent capability with timing
measurement and faster detection time, it is possible to
detect tone with length less than 23 mS. DTMF specifi-
cations do not specify the maximum on-time for the
DTMF signals. However, if maximum tone duration is
known, then define it. This will be helpful in rejecting
other tone signals based on timing requirements. By
default, the system on and off period requirements are
defined to DTMF specifications. However, users can
change these values by modifying Code Section 1 to
meet their custom requirements.

CODE SECTION 2

Code Section 2 defines the DTMF detector system
parameter. Performance of the system with a particular
parameter can be realized with the included DTMF
Detection Simulator PC software. The DTMF system-
related parameters include sampling frequency for
DTMF signals and window period for same. Depending
on the actual system implementation, users can use
different PORTB pins to implement the system (users
can define the pin under SamplePin).

CODE SECTION 3

Code Section 3 provides selection of the FIFO buffer
size for the storage of received DTMF characters. If the
user is not expecting bulk data, minimum size should
be used to save RAM. It is up to the user to select the
best size to meet their requirement.

;DTMF Signal timing requirement definition (Code Section 1)
DTMFMinOnTime = .23 ;mS.
DTMFMaxOnTime = .750 ;mS.
DTMFMinOffTime= .40 ;mS.

;system parameters (Code Section 2)
#define SamplePin PORTB,4 ;Zero cross detector I/P pin
#define Fsamp .8000 ;Sampling frequency in Hz
#define TotSamplePnts .128 ;Digit should be such that

;TotSamplePnts/8 = n, where n is integer

;Define DTMF Character Storage Buffer size (Code Section 3)
#define DTMFCodeBufferSize .20

;Define maximum allowed edges in blank period (Code Section 4)
#define MaxTotOffPeriodEdges.16

Note: It is the responsibility of the user to define
this pin as an input.
DS00257A-page 18 © 2005 Microchip Technology Inc.

AN257
CODE SECTION 4

Code Section 4 provides the selection of maximum
allowed signal edges in a pause period. Ideally, there
should not be any signals or pulses during pause time.
However, in a real system, because of noise and other
problems, the DTMF system may get a few edges in
the pause period. This will be considered an end of the
pause period and depending on the occurrence of the
signal, an invalid pause time may be detected which
can lead to the rejection of the received signal.

The solution for this is to use an external low-pass filter
to remove these noise pulses. Nevertheless, to avoid
the usage of an external filter, firmware provides this
facility. Users can define the maximum allowed pulses
in a pause period and if the total number of pulses that
occur in a pause period are less than the defined value,
then firmware will consider it as a valid pause period.
This reduces the requirement for an external low-pass
filter. The user is the best judge to select an appropriate
value.

The majority of the system timing requirements are
based on the main oscillator frequency. Users need to
define the main oscillator frequency in the
MainDef.inc file (see Example 2). The accurate
oscillator frequency is critical for the proper operation of
the system.

EXAMPLE 2:

Interrupt Handling

The DTMF detection system is based on two interrupts
to achieve the complete background operation. Timer1
or Timer3 is used to achieve a precise sampling fre-
quency, while a PORTB interrupt is used to monitor the
activity on the telephone line for timing measurements.
The timer interrupt needs to be highest priority interrupt
for proper operation. The PORTB change interrupt is
assigned to the low priority interrupt. Timer overflow
provides an interrupt at the sampling frequency. The
firmware samples the bit value of the signal and stores
it in RAM. The algorithm implementation is slightly dif-
ferent than what was discussed in theory. The firmware
first samples the data and stores the bit value in RAM.
Then, it verifies the timing requirements. If all the timing
requirements are met, then it performs the 1-bit DFT.
This increases the RAM requirement but it considerably
decreases the processor power requirement.

The PORTB interrupt sets a flag on activity. The timer
interrupt uses this flag to increment the on or off-time
counter for timing measurements. The timer interrupt
increments one counter for off-time measurement. The
PORTB interrupt clears the same counter. Therefore, if
a signal is present, the off counter value will never go
high. In the absence of a signal, the off-time counter will
keep incrementing. One noise glitch during off-time
can result in improper measurement of the off-time.
Users can define the compile-time option
MaxTotOffPeriodEdges to avoid this problem. If it is
defined, then firmware will wait for the number of edges
defined in MaxTotOffPeriodEdges before clearing
the off counter. This will significantly improve the noise
performance for off-time calculation.

1-bit DFT calculation requires some processing time in
milliseconds (depends on FOSC). If this is performed on
the timer interrupt, then it can block the system
resources for a longer period. To avoid this, firmware
samples all of the data on timer interrupt and checks for
the timing requirement. If all of the conditions are met,
a flag is set and a PORTB interrupt is generated. All of
the 1-bit DFT analysis is performed on the low priority
interrupt, which allows other high priority interrupts to
be used.

Figure 15 shows the flowchart for the PORTB change
interrupt handler and Figure 19 shows the flowchart for
the Timer interrupt handler.

Note: The user should ensure that the oscillator
frequency is stable and accurate.

#define FOSC .20000000 ;Oscillator Frequency
© 2005 Microchip Technology Inc. DS00257A-page 19

AN257
FIGURE 15: PORTB CHANGE INTERRUPT HANDLER

Set Flag to Indicate
 Presence of DTMF Signal

Clear Pause

Is receive new
character flag set?

Set Flag to Begin
Sampling of Data

START
Service PORTB Interrupt

DONE

Yes

No

DTMF analyze

No

Analyze the Sampled Data(1).
If a Valid DTMF Character is Found,
then Copy it into User FIFO Buffer.

Yes
flag set?

Detect Counter

Note 1: See Figure 16, DTMF Data Analysis.
DS00257A-page 20 © 2005 Microchip Technology Inc.

AN257
FIGURE 16: DTMF DATA ANALYSIS

Load Indirect Access Registers to Point to
Sample Data and Energy Counters.

Load Table Pointer to Point to Reference Table
in Program Memory.

START

Get Sample Byte and Sine Ref. Table Value

Is bit n of sample =
sine ref table bit

value?

Decrement Sine
Energy Counter

Increment Sine Energy Counter

Is bit n of sample =
cos ref table bit

value?

Decrement Cos
Energy Counter

Increment Cos Energy Counter

All 8 bits compared?

All data points
compared?

A

Yes

Yes

Yes

Yes

No

No

No

No

B

No

No
© 2005 Microchip Technology Inc. DS00257A-page 21

AN257
FIGURE 17: DTMF DATA ANALYSIS (CONTINUED)

A

Do Unsigned Addition of Sine and Cos
Counter and Store Resultant Value in Memory

Does frequency
belong to Low

Group?

Is energy > Prev
Max?

Is energy > Prev
Max?

New Low Group Winner
Frequency. Remember
Energy and Frequency.

New High Group Winner
Frequency. Remember
Energy and Frequency.

All frequencies
analyzed?

B

C

Yes Yes

Yes

No No

No

No

Yes
DS00257A-page 22 © 2005 Microchip Technology Inc.

AN257
FIGURE 18: DTMF DATA ANALYSIS (CONTINUED)

C

Is Low Group winner energy
winner’s lower sideband

frequency?

Is Low Group winner energy
winner’s higher sideband

frequency?

Is High Group winner energy
winner’s lower sideband

frequency?

Is High Group winner energy
winner’s higher sideband

frequency?

Store the Received DTMF
Character in FIFO BufferReject Received Data

DONE

Yes

No

Yes

Yes

Yes

No

No

No
© 2005 Microchip Technology Inc. DS00257A-page 23

AN257
FIGURE 19: TIMER INTERRUPT HANDLER

Increment Signal
Presence Counter

DTMF signal
present?

Increment Pause Detect
Counter

Pause counter
threshold?

DONE

Signal sampled?

Is signal presence
counter value within

limits?

Set Flag to Analyze Data.
Generate PORTB Interrupt.

Clear Signal Presence
Counter. Reject DTMF

Character (if received). Set
Flag to Receive New Character.

DONE

Sample Data

Is sampling flag
set?

All data sampled? Stop Sampling. Indicate
Data is Sampled.

START
Service Timer Interrupt

No

Yes

No Yes

Yes

Yes

Yes

Yes

No

No

No

No
DS00257A-page 24 © 2005 Microchip Technology Inc.

AN257
User Code

To enable the DTMF detector module, the
SetDTMFDecoderMode macro and the following
functions must be called. Figure 20 shows the
simplified block diagram for the user code.

FIGURE 20: USER CODE

USER CODE FUNCTIONS

InitDTMFDecoder

This routine is used to initialize the DTMF decoder.
Users should call this function to start using the DTMF
decoder module

Pre-Condition

None

Input

None

Output

None

Stack Requirement

1 level deep

Side Effects

Databank, STATTUS, W changed

ServiceTMRInt

This routine is used to sample the o/p of the zero-cross
detector. Once all the data is captured, it generates a
PORTB interrupt to analyze data. It also checks for
some of the timing requirements. This function should
be called from a high priority interrupt vector and
should have highest priority.

Pre-Condition

Should be highest priority interrupt for proper
operation.

Input

None

Output

None

Stack Requirement

1 level deep

Side Effects

Databank, STATTUS, W changed

START

Initialize

Initialize System

Read DTMF

Is DTMF

Do Application Specific Task

END

Process Received
DTMF Character

Yes

No

Set DTMF

Shutdown

character received?

DTMF Detector(4)

FIFO Buffer(3)

Detector Mode(2)

DTMF Detector(1)

Note 1: Call InitDTMFDecoder function.

2: Call SetDTMFDecoderMode macro.

3: Call ReadDTMFDecBuf function.

4: Call ShutDownDTMFDecoder macro.
© 2005 Microchip Technology Inc. DS00257A-page 25

AN257
ServicePortBInt

This routine is used to monitor the telephone line activ-
ity and generates data to find the DTMF on-time and
off-time. This function also analyzes the sampled data
to find a valid DTMF character. This function should be
called from a low priority interrupt vector.

Pre-Condition

None

Input

None

Output

If a valid DTMF character is found, it is stored in
the DTMF FIFO buffer.

Stack Requirement

1 level deep

Side Effects

Databank, STATTUS, W changed

ReadDTMFDecBuf

This routine is used to read the DTMF decoder FIFO
buffer. If this buffer does not contain any data, then it
returns ‘0’; otherwise, it returns the ASCII equivalent of
the character.

Pre-Condition

None

Input

None

Output

W reg = ASCII value of DTMF character (if
available); otherwise, W reg = 0.

Stack Requirement

2 levels deep

Side Effects

Databank, W, STATUS, FSR0 and Table Access
registers changed. Overlaid RAM locations
TempD1, TempD2 and TempD3 used.

USER MACROS

SetDTMFDecoderMode

This macro is used to enable the DTMF detector
module.

Pre-Condition

None

Input

None

Output

None

Stack Requirement

None

Side Effects

None

ShutDownDTMFDecoder

This macro is used to shut down the DTMF detector
module.

Pre-Condition

None

Input

DisablePORTBInt (if PORTB change interrupt is
not used by any other resource).

KeepPORTBInt (if PORTB change interrupt is
being used by any other resource).

Output

None

Stack Requirement

None

Side Effects

None

Status information

DTMFDecBufSize – Contains the information of
number of bytes available in the FIFO buffer. Do
not modify this parameter.

Error messages

Message: "Maximum data buffer size is
limited to 127"

Detail: Maximum allowed size of FIFO buffer is
127 bytes; if the user tries to define a larger FIFO
buffer, the above message is generated.

Workaround: Use FIFO buffer size of less than
127 bytes.
DS00257A-page 26 © 2005 Microchip Technology Inc.

AN257
DTMF DETECTOR TESTING

The International Telecommunications Union (ITU) and
Bellcore (Telcordia Technologies) have set recommen-
dations for DTMF detector performance. There are
some gray areas in the DTMF specifications and rec-
ommendations, and a lack of clarification on some
specifications that can lead to various interpretations
for test methods. For example, ITU Frequency
Tolerance recommendations are:

• Maximum accepted frequency offset: 3.5%

• Minimum rejected frequency offset: 1.5%

ITU does not specify whether one or both frequencies
of the DTMF signal must be able to handle the 1.5%
error simultaneously. This can create the following test
conditions:

• Nominal Low Group, Nominal High Group
• +FR error on Low Group, Nominal High Group
• -FR error on Low Group, Nominal High Group

• Nominal Low Group, +FR error on High Group
• Nominal Low Group, -FR error on High Group
• +FR error on Low Group, +FR error on High

Group
• +FR error on Low Group, -FR error on High Group

• -FR error on Low Group, +FR error on High Group
• -FR error on Low Group, -FR error on High Group

where FR is the selected frequency range.

If we consider 1.5% as the range, an infinite number of
possible frequency steps are created for the total pos-
sible test cases. For the ITU specification, the required
precision in both timing and frequency tolerances are
very difficult to achieve with most of the software-based
DTMF decoders since they use some form of DFT. The
goal of the detector performance test was to test at all
possible conditions to meet all DTMF requirements;
however, this can lead to a multitude of test cases.

Considering the wide variety of possible test cases, it is
very important to know how the DTMF detector is
tested. The detector was tested in the following ways:

• Mathematical Modeling: The mathematical
simulator software (DTMF Detector Simulator) was
created to model the proposed system (see
Appendix A: “DTMF Detection Simulator”
“DTMF Detection Simulator”). The firmware
algorithm was checked with a variety of synthe-
sized DTMF test conditions. This made it possible
to test firmware algorithm with thousands of DTMF
test conditions quickly.

• Using an Arbitrary Waveform Generator: An Agilent
Technologies arbitrary waveform generator was
used to create a variety of DTMF test conditions.
The resulting information was input to the DTMF
detector system to verify the performance of the
system.

• Telephone Line Simulator: The Sage Instruments
930A Communication Test Set telephone line
simulator was used to check the performance of
the DTMF detector.

• Actual Telephone Line: The DTMF detector system
was finally verified with an actual POTS line.

The MIPS requirements for the DTMF detector can be
calculated using certain test files. See Appendix C:
“Test Files” “Test Files” for details on these test files.

RESOURCE REQUIREMENTS

The following are the resource requirements for the
optimized DTMF detector system:

• Processor power – approximately 0.8 MIPS
(FSAMP = 8 kHz, window period = 16 mS,
10 characters/second)

• RAM
- Access – 16 bytes
- Banked – 30 bytes + FIFO buffer size

- Banked – 17 bytes (Context savings)
- Banked – 3 bytes (Overlaid)

• ROM – 1580 bytes

• Peripherals
- Timer1 or Timer3
- One PORTB Change Interrupt pin

The use of different sampling frequency, window period
and character throughput rate, can substantially
change the resource requirements and performance.
For example, use of a 24 mS window period, with the
same sampling frequency of 8 kHz, will reduce the total
failures but will increase the RAM requirement. In addi-
tion, it will take slightly more MIPS and have a higher
detection time.
© 2005 Microchip Technology Inc. DS00257A-page 27

AN257
POSSIBLE IMPROVEMENTS

A different sampling frequency and period can consid-
erably change the performance. The user can use PC
software to find the best system that suits their
requirements.

It is still possible to get better performance with some
modifications in the algorithm. Some of the possible
improvements are:

• Use two levels of analysis. The performance of
DFT is dependent on the sampling frequency and
period. The basic 1-bit DFT provides wideband
response; however, it can quickly detect the
dominant frequencies. Therefore, the solution is
to perform two levels of analysis.

To do this, first do a quick sampling (e.g., 8 mS) to
find the dominant frequencies. Now, change the
sampling frequency and period in such a way that
it provides better DFT for the two dominant
frequencies. Sample it again for a longer period
(e.g., 16 mS). This will provide better DFT results.
Then, use an enhanced algorithm to achieve
better performance.

• It is possible to improve power level and Twist
performance. Analysis of the dominant frequency
energy can provide the information on Twist. In
the case of forward Twist, the Low Group
dominant energy will be higher than the High
Group dominant energy and vice versa. The
difference in energy can provide the Twist value.
This information can be used to create various
threshold values for power level and Twist
requirements.

• Talk-off test improvement. Human voice signals
are rich in harmonics, while DTMF signals are
pure tone signals. This property can be used to
improve the talk-off performance of the DTMF
detector by analyzing the second harmonic of the
DTMF nominal frequency. It is a voice signal if
they contain significant energy and needs to be
rejected; otherwise, it is a DTMF tone. This will
require 8 more reference tables and analysis of
two dominant frequency harmonic energies.

CONCLUSION

We discussed the new concept of decoding DTMF
signals using a PIC18 microcontroller. We have seen
that the DTMF decoder system is flexible enough to
achieve various performance-to-resource ratios. The
system meets all or most of the DTMF requirements
depending on the implementation. In summary, we
discussed the following:

• DTMF decoder specifications and requirements.
• Implemented a 1-bit DFT without intense

computation.
• The method to define the bands to meet DTMF

frequency requirements.
• The method to accurately check the timing

requirements.
• The required hardware setup that uses very little

external resources and avoids the necessity of
AGC.

• The firmware details. The firmware is based on
two interrupts to achieve complete background
operation. The firmware implements a FIFO buffer
that eases the reception of bulk data. Firmware
provides some compile-time options to customize
the module for individual requirements.

• The resource requirements of the system. The
system uses very little internal and external
resources and is very efficient on MIPS usage.

• The software that works as a simulator and
implements a mathematical algorithm model, and
also works as a development tool exporting data
to firmware.
DS00257A-page 28 © 2005 Microchip Technology Inc.

AN257
APPENDIX A: DTMF DETECTION
SIMULATOR

Figure A-1 shows the user interface window for the
DTMF Detection Simulator software.

FIGURE A-1: DTMF DETECTION SIMULATOR USER INTERFACE
© 2005 Microchip Technology Inc. DS00257A-page 29

AN257
TABLE A-1: DTMF DETECTION SIMULATOR PARAMETERS

Parameter Type Description

High Group Amplitude Edit Value Relative amplitude of High Group frequencies.

Low Group Amplitude Edit Value Relative amplitude of Low Group frequencies.

High Group Phase Edit Value Phase value for High Group frequencies.

Low Group Phase Edit Value Phase value for Low Group frequencies.

SNR (dB) Edit Value Signal-to-noise ratio at test point. This parameter defines the noise level
based on the amplitude of two sinusoidal.

697 (Low Group) Check Box Analyze/Do not analyze components with 697 Hz as Low Group frequency.

770 (Low Group) Check Box Analyze/Do not analyze components with 770 Hz as Low Group frequency.

852 (Low Group) Check Box Analyze/Do not analyze components with 852 Hz as Low Group frequency.

941 (Low Group Check Box Analyze/Do not analyze components with 941 Hz as Low Group frequency.

1209 (High Group) Check Box Analyze/Do not analyze components with 1209 Hz as High Group frequency.

1336 (High Group) Check Box Analyze/Do not analyze components with 1336 Hz as High Group frequency.

1477 (High Group) Check Box Analyze/Do not analyze components with 1477 Hz as High Group frequency.

1633 (High Group) Check Box Analyze/Do not analyze components with 1633 Hz as High Group frequency.

System Parameters

Sampling Frequency Edit Value Sampling frequency in Hz.

Total Points Edit Value Total points to be analyzed.

Window Period Edit Value Period for sampling the signal in mS. If a window period is defined, software
will calculate the total points and vice versa.

DTMF Test Frequency
Range

Edit Value Defines the frequency offset in % from center to create the following test
conditions (FR = frequency range value)
• Nominal Low Group frequency, Nominal High Group frequency
• +FR error on Low Group frequency, Nominal High Group frequency

• -FR error on Low Group frequency, Nominal High Group frequency
• Nominal Low Group frequency, +FR error on High Group frequency
• Nominal Low Group frequency, -FR error on High Group frequency

• +FR error on Low Group frequency, +FR error on High Group frequency

Generate Sample Table Options
Menu
Command

This command generates a sample DTMF signal value table based on
selected parameters. This command is useful to test the firmware for a variety
of DTMF test conditions without actually feeding the DTMF signal.
To use this feature, the user must select the UseSampleTable compile-time
option in firmware. If this option is used, firmware will not sample the actual
signal, but will use values from the sample table generated by this command.

Run Test Command
Button

This command runs the DTMF simulator test for the selected parameters
and displays various results in the result section.

Note: The DTMF Detection Simulator software provides a tool to estimate system performance. The simulator
does not consider the signal timing requirements. Remember that the actual system performance may vary
from the predicted system.
DS00257A-page 30 © 2005 Microchip Technology Inc.

AN257
Analyze Command
Button

This command can be used for analyzing the DTMF algorithm for a range of
parameters. Clicking on the button will display one dialog box. The user can
select Twist requirement and the total amplitude steps for each Twist.
Similarly, the user can enter the total steps in phase value and frequencies
of each sinusoidal and any initial phase difference value here.
For each frequency step, the nine possible combinations explained in the
DTMF test frequency range will be tested. Depending on the speed of the
computer and the total steps selected in each analysis, it can take a few
minutes to finish the operation. The progress bar in the lower left corner
displays the progress of the analysis. The process generates the following
data files for user information.
• DTMFBR.dat – This file provides the information on test cases that

failed with the basic algorithm. It also provides the same information as
the basic algorithm’s result display.

• DTMFER.dat – This file provides test case information that failed with
enhanced algorithm. It also provides the same information as
enhanced algorithm’s result display.

• DTMFres.dat – This file provides test case information on match
counter values of all test cases. It also provides the same information
as match counter values result display.

Results

Match Counter Values Result
Display

Values of match counter (energy level) at all analysis frequencies and
sideband are displayed here.

Result with Basic
Algorithm

Result
Display

Basic algorithm is applied on the DTMF signals for analysis. In this
algorithm, frequency with highest match counter (energy level) value in
each group is considered a dominant frequency. If the difference in value of
the two highest match counters is less than threshold (secondary energy
cutoff), then no dominant frequency is found. This results in rejection of
DTMF character. On rejection, three error conditions are displayed:
1. Acceptance Error – If both frequencies are within the DTMF frequency

range and a character was rejected, an acceptance error is
generated.

2. Rejection Error – If one of the frequencies is outside the DTMF
frequency range and a character was accepted, a rejection error is
generated.

3. False Detect Error – If a detected DTMF character is different than the
generated character, a false detect error is generated.

If any of the above errors are generated, the test conditions and failure type
are displayed. Statistics of total failure, failure for each error, and total test
cases are displayed following the other information.

TABLE A-1: DTMF DETECTION SIMULATOR PARAMETERS (CONTINUED)

Parameter Type Description

Note: The DTMF Detection Simulator software provides a tool to estimate system performance. The simulator
does not consider the signal timing requirements. Remember that the actual system performance may vary
from the predicted system.
© 2005 Microchip Technology Inc. DS00257A-page 31

AN257
Results With Enhanced
Algorithm

Result
Display

The enhanced algorithm is applied on the DTMF signals for analysis. In this
algorithm, the first algorithm is applied on the signals to find a dominant
frequency pair. Once a dominant frequency pair is found, its sideband
frequencies are analyzed to define the detection band. If any of the
sideband frequency energy levels is higher than the center frequency, that
character is rejected. On rejection, the following error conditions are
displayed:
1. Acceptance Error – If both frequencies are within the DTMF frequency

range and a character was rejected, an acceptance error is
generated.

2. Rejection Error – If one of the frequencies is outside the DTMF
frequency range and if character was accepted, a rejection error is
generated.

3. False Detect Error – If a detected DTMF character is different than the
generated character, a false detect error is generated.

If any of the above errors are generated, the test conditions and failure type
are displayed. Statistics of total failure, failure for each error and total test
cases are displayed following the other information.

Generate Sine/Cosine
Table

Options
Menu
Command

This command generates a sine/cosine table for reference frequencies and
their sideband frequency. It generates DTMFTab.dat (sine/cosine
reference frequency table) and DTMFSBT.dat (sine/cosine sideband
frequency table) files that are used by the firmware.

Generate Sine w/f Table Options
Menu
Command

This command generates a sine waveform table for use by the Telecom
signal generator firmware.

TABLE A-1: DTMF DETECTION SIMULATOR PARAMETERS (CONTINUED)

Parameter Type Description

Note: The DTMF Detection Simulator software provides a tool to estimate system performance. The simulator
does not consider the signal timing requirements. Remember that the actual system performance may vary
from the predicted system.
DS00257A-page 32 © 2005 Microchip Technology Inc.

AN257
APPENDIX B: ZERO-CROSS
DETECTOR

The following figure shows the schematic diagram for
the zero-cross detector, which uses the Microchip
op amp, MCP604. Capacitor C1 is used to block the
DC component. Since the op amp performs best in its
linear region, two resistors (R3 and R4) are used to
bias the inputs at VDD/2. The AC coupled signal is fed
to one input of the op amp. The positive direction signal
will create a voltage difference at the op amp input.
Because of high gain, this will result in a logic state
change at output; however, because of op amp slew
rate specifications, the circuit may not provide 50%
duty cycle at output. This problem will be more signifi-
cant at lower amplitude. The transistor switch at the
op amp output provides a quick transition to achieve
50% duty cycle. Please refer to the schematic in
Figure B-1 for more details. This circuit was tested for
amplitude sensitivity and it provides constant output for
signals between 50 mV to 5.0V.

The PCB layout and power supply decoupling play an
important role for the performance of the zero-cross
detector.

The following simple tests can help in verifying the
performance of the zero-cross detector.

In the absence of signal (no input or pause period),
RB4 should be held at a constant DC level. If the sys-
tem is noisy, then some pulses may be observed on
RB4. This may cause problems with pause time
detection.

Feed a single frequency sinusoidal at input and
observe the output. The output should be a 50% duty
cycle square wave. Vary the amplitude of the incoming
signal over a wide range (expected DTMF signal
range). This should have a negligible effect on the
square wave output (RB4) in terms of duty cycle,
frequency, and amplitude.

This circuit was designed to create a low-cost zero-
cross detector. The MCP606 kind of generic op amp
was used. The other op amp on the same chip can be
used for other system requirements. The VDD/2 biasing
was used to improve the performance and avoid supply
line noise dominance. The transistor switch is used to
overcome op amp slew rate or GBWP limitations. This
circuit is provided for reference only. It is possible to
implement this circuit in a variety of ways. The user can
select any circuit that provides comparable
performance.

FIGURE B-1: ZERO-CROSS DETECTOR SCHEMATIC DIAGRAM

–

+

4K7

4K7

22K

22K

1 μF

10K

2.0V Drop
22K

RB4

4K7

ZCDIn

+5 VA

+5 VA

+5 VD

or

0.1 μF

1/4 MCP604

R1 R2

R3

R4

R5

R6

R7

C1

C2

0.1 μF
© 2005 Microchip Technology Inc. DS00257A-page 33

AN257
APPENDIX C: TEST FILES

To test the functionality and demonstrate the usage of the
DTMF detector, the following test files were developed.

• DTMFDetT.asm: This test file explains the usage
of the FSK detector module.

• DTMFDtMT.asm: This test file is useful to calcu-
late the MIPS requirement of the DTMF detector
module for different system implementation (see
the “Firmware” section for more information).

The DTMFDtMT.asm file was developed to measure
the MIPS requirement of firmware for a particular
operating condition. Because the MIPS requirement
depends on various factors and can change consider-
ably, it can be approximated for certain system
implementation. The basic logic used is to test the time
available to the foreground application in the presence
of a background task. Output of one port pin is toggled
at a fixed interval in foreground. If an interrupt-based
system is not present, the system receives all of the
available MIPS. In this case, pulse width of the signal
will be minimum. In the presence of a background task,
the foreground task will not get 100% processing
power, and as the foreground task is interrupted contin-
uously, it will result in higher pulse width at test pin for
the same delay. The difference in pulse width can be
measured to estimate the MIPS consumption of the
background task in the measurement period.

The MIPS consumption of the DTMF firmware can be
measured in the following way.

• Define MIPSTestPin (port pin), FOSC and other
system related parameters. Make sure the port
pin used for the MIPS test is defined as o/p.

• Define the DTMFDecBasicMIPSTest parameter.
• Run the code and measure the period of square

wave at MIPS test pin, referred to as “Ref width”.
• Undefine the DTMFDecBasicMIPSTest

parameter (comment the definition). Then, define
the system in such a way that the background
task works on a particular condition during the
measurement period (e.g., for consumption at
maximum throughput, provide continuous data
during the measurement period, typically
10 characters/sec).

• Run the code and measure the period of the signal
at the MIPS test pin (referred to as “Sample Width”).

• The MIPS requirement for the above operating
condition can be found using the following equation:
MIPS Usage = Tot MIPS * ((Sample Width – Ref
Width)/Sample Width), where:
Tot MIPS = the total MIPS available to the system
as the oscillator frequency.

• The MIPS requirement for other operating condi-
tions can also be measured using the above
method. Some compile-time options are provided
in firmware to generate measuring conditions.

APPENDIX D: SOURCE CODE

The complete source code, including the application and
necessary support files, are available under a no-cost
license agreement. It is available for download as a single
archive file from the Microchip corporate web site, at:

www.microchip.com

After downloading the archive, always check the file
“version.log” for the current revision level and a history
of changes to the software.
DS00257A-page 34 © 2005 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
© 2005 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00257A-page 35

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00257A-page 36 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel:011-604-646-8870
Fax:011-604-646-5086

Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

04/20/05

	Introduction
	DTMF Overview
	TABLE 1: DTMF Frequencies
	FIGURE 1: DTMF Waveform

	DTMF Specifications
	Frequency Requirements
	Power Level Requirements
	Twist Requirements
	Timing Requirements
	Signal-to-Noise Ratio Requirements
	Guard-Time Test
	Talk-Off Test

	Theory
	Fourier Transform Theory
	EQUATION 1: Fourier Transform
	EQUATION 2: Discrete Fourier Transform
	EQUATION 3: Simplified DFT

	DFT Fundamentals
	EQUATION 4: DFT Real Part Calculation Formula
	FIGURE 2: DFT Using Square Wave

	Simplified DFT Implementation
	FIGURE 3: Case 1: Actual Signal Matches the Reference Signal
	FIGURE 4: Case 2: Actual Signal Does Not Match the Reference Signal

	Orthogonality of Simplified DFT
	FIGURE 5: Case 3: Actual Signal is Out-of-Phase to Reference Signal
	FIGURE 6: Case 4: Using Sine and Cosine Reference

	Simplified DFT Limitations?
	FIGURE 7: Case 1: Signal Period is Integer Multiple of Sample Period
	FIGURE 8: Case 2: Signal Period is Not an Integer Multiple of Sample Period
	Test Case 1:
	Test Case 2:
	Test Case 3:

	Simplified DFT Band Definition
	Test Case 4:
	FIGURE 9: 1-Bit DFT Spectrum

	Test Case 5:
	Test Case 6:
	TABLE 2: DTMF Frequency Chart

	Meeting the DTMF Specifications
	Frequency Requirements
	Power Level Requirements
	Twist Requirements
	Timing Requirements
	Signal-to-Noise Ratio Requirements
	Guard-Time Test
	Talk-Off Test

	Implementation
	Hardware Setup
	FIGURE 10: Hardware Setup
	FIGURE 11: Zero-Cross Detector Performance
	FIGURE 12: Schmitt Trigger Performance
	FIGURE 13: Comparator Performance
	FIGURE 14: External Interrupt Circuit

	Firmware
	Compile-Time Options
	EXAMPLE 1: DTMFDec.inc Code Portion
	Code Section 1
	Code Section 2
	Code Section 3
	Code Section 4
	EXAMPLE 2:

	Interrupt Handling
	FIGURE 15: PORTB Change Interrupt Handler
	FIGURE 16: DTMF Data Analysis
	FIGURE 17: DTMF Data Analysis (Continued)
	FIGURE 18: DTMF Data Analysis (Continued)
	FIGURE 19: Timer Interrupt Handler

	User Code
	FIGURE 20: User Code
	User Code Functions
	User Macros

	DTMF Detector Testing
	Resource Requirements
	Possible Improvements
	Conclusion
	Appendix A: DTMF Detection Simulator
	FIGURE A-1: DTMF Detection Simulator User Interface
	TABLE A-1: DTMF Detection Simulator Parameters�

	Appendix B: Zero-Cross Detector
	FIGURE B-1: Zero-Cross Detector Schematic Diagram

	Appendix C: Test Files
	Appendix D: Source Code
	Worldwide Sales and Service

