1. How can I reference a BIT in a BYTE?
MyByte.0 references Bit 0 of MyByte

MyByte.1 references Bit 1 of MyByte

MyByte.2 references Bit 2 of MyByte

MyByte.3 references Bit 3 of MyByte

MyByte.4 references Bit 4 of MyByte

MyByte.5 references Bit 5 of MyByte

MyByte.6 references Bit 6 of MyByte

MyByte.7 references Bit 7 of MyByte

Another way of accessing the bits in a byte is indexing the bits using a byte variable.

MyByte.0(Indexer)

When Indexer is in the range 0-7, it will access Bits 0-7 of MyByte.

Example to display all eight BITS of a BYTE sequentially, Bit at a time…

For Indexer=0 to 7

MyBit=MyByte.0(Indexer)

LCDOut $FE,1,"Bit ",#Indexer,"=",#MyBit

Pause 2000

Next Indexer
2. How can I reference a BIT in a WORD?

MyByte.0 references Bit 0 of Myword

MyByte.1 references Bit 1 of Myword

MyByte.2 references Bit 2 of Myword

MyByte.3 references Bit 3 of Myword

MyByte.4 references Bit 4 of Myword

MyByte.5 references Bit 5 of Myword

MyByte.6 references Bit 6 of Myword

MyByte.7 references Bit 7 of Myword

MyByte.8 references Bit 8 of Myword

MyByte.9 references Bit 9 of Myword

MyByte.10 references Bit 10 of Myword

MyByte.11 references Bit 11 of Myword

MyByte.12 references Bit 12 of Myword

MyByte.13 references Bit 13 of Myword

MyByte.14 references Bit 14 of Myword

MyByte.15 references Bit 15 of Myword

Another way of accessing the bits in a word is indexing the bits using a byte variable.

MyWord.0(Indexer)

When Indexer is in the range 0-15, it will access Bits 0-15 of MyWord.

Example to display all sixteen BITS of a WORD sequentially, Bit at a time…

For Indexer=0 to 15

MyBit=MyWord.0(Indexer)

LCDOut $FE,1,"Bit ",#Indexer,"=",MyBit

Pause 2000

Next Indexer
3. How can I reference a BIT in a BYTE ARRAY?

Arrays are arranged in memory in BIT ORDER from the LEAST SIGNIFICANT BIT of the first Byte at the bottom end, to the MOST SIGNIFICANT BIT of the last Byte at the top end. Consider this…

MyByteArray var BYTE [40]

There are 40 Bytes in this array (0-39), each with eight Bits. That means this array has a total of 320 Bits (numbered 0-319 sequentially). All the Bits in this Byte Array can be referenced individually like so…

MyByteArray.0(Indexer)

Where Indexer in this instance is a WORD (because there’s more than 256 Bits in the array). When…

Indexer=0 it references Bit 0 of MyByteArray(0)

Indexer=7 it references Bit 7 of MyByteArray(0)

Indexer=8 it references Bit 0 of MyByteArray(1)

Indexer=15 it references Bit 7 of MyByteArray(1)

All the way, when…

Indexer=312 it references Bit 0 of MyByteArray(39)

Indexer=319 it references Bit 7 of MyByteArray(39)

If Indexer was a BYTE rather than a WORD, you will only be able to access Bits 0-255.

4. How can I reference a BIT in a WORD ARRAY?

Just like the Byte Arrays, Word Arrays are arranged in memory in BIT ORDER from the LEAST SIGNIFICANT BIT of the first Word at the bottom end, to the MOST SIGNIFICANT BIT of the last Word at the top end. Consider this…

MyWordArray var WORD [25]

There are 25 WORDS in this array (0-24), each with sixteen Bits. That means this array has a total of 400 Bits (numbered 0-399 sequentially). All the Bits in this Byte Array can be referenced individually like so…

MyWordArray.0(Indexer)

Where Indexer in this instance is a WORD (because there’s more than 256 Bits in the array). When…

Indexer=0 it references Bit 0 of MyWordArray(0)

Indexer=15 it references Bit 15 of MyWordArray(0)

Indexer=16 it references Bit 0 of MyWordArray(1)

Indexer=31 it references Bit 15 of MyWordArray(1)

All the way, when…

Indexer=384 it references Bit 0 of MyWordArray(24)

Indexer=399 it references Bit 15 of MyWordArray(24)

If Indexer was a BYTE rather than a WORD, you will only be able to access Bits 0-255.

5. How can I reference a BYTE in a WORD ARRAY?

As can be previously seen, all the bits in an array are stored sequentially in memory. It follows that the BYTES in a WORD ARRAY also follow sequentially. This means we can easily extract any BYTE we want to out of a WORD Array in a similar manner. Consider again…

MyWordArray var WORD [25]

There are actually 50 Bytes in this array (0-49). The first byte (0) being the LOWBYTE of MywordArray(0), and the last byte (49) being the HIGHBYTE of MyWordArray(24). Using a similar manner to Bit access, we can access all fifty Bytes of this Word array like so…

MyWordArray.Lowbyte(Indexer)

Where Indexer is in the range 0-49 for my previously defined example Array of 25 Words.

This is really handy, because we can use this method of loading or unloading Word Arrays from EEPROM for example very easily.

Note that HIGHBYTE cannot be used in this instance, because it cannot access the LowByte of the first array element… ie..

MyWordArray.HighByte(0)=MywordArray.LowByte(1)

all the way to…

MyWordArray.HighByte(48)=MywordArray.LowByte(49)

More dangerously, MyWordArray.HighByte(49) will actually perform an unauthorised access on an unknown byte OUTSIDE the MyWordArray structure.

Port file register addresses are sequential. For instance on the 16F876A file

register address for porta is at location 05h, portb is at 06h, and portc is at

07h. All you need is a pointer to the base of the bit index.

Example; SYMBOL PORT_PIN = PORTA ' <- start of bit index or pointer

Now using something like this, you can index all port bits.

X VAR BYTE ' For loop & bit index pointer

ADCON1 = 7 ' All digital

PORTA = 0 ' Clear all port pins

PORTB = 0

PORTC = 0

TRISA = 0 ' Make them all outputs

TRISB = 0

TRISC = 0

FOR X = 0 TO 23

PORT_PIN.0[X] = 1 ' Set all porta, portb, and portc pins high

NEXT X

There aren't 8 pins on porta that can go high, but it's still an 8-bit file register

so we have to treat it as 8-bit and index from 0 to 23 for 24-bits total.

You can do this on any PIC to index all port pins individually just using porta

as the starting index pointer.

PBP doesn't perfom bounds checking, so you can get away with indexing

out of bounds.

Note that also means you could write to a register you may not intend to if

you're not careful.

You could drop porta, and just use portb as the starting address also.

SYMBOL PORT_PIN = PORTB

X VAR BYTE ' For loop & bit index pointer

PORTB = 0

PORTC = 0

' Make them all outputs

TRISB = 0

TRISC = 0

FOR X = 0 TO 15 ' 16-bits total

PORT_PIN.0[X] = 1 ' Set all portb, and portc pins high

NEXT X

TRISA = %00000000

TRISB = %00000000

TRISC = %00000000

TRISD = %00000000

TRISE = %00000000

ADCON1 = %00000000

PORTA = 0

PORTB = 0

PORTC = 0

PORTD = 0

PORTE = 0

MYPORT VAR BYTE

LOOP var BYTE

'======Say you have to drive

'these pins in a sequence. They are all mixed.

RelayA VAR PORTA.1

RelayB var PORTA.3

RelayC var PORTB.5

RelayD var PORTC.0

RelayE var PORTD.2

RelayF var PORTD.4

RelayG var PORTE.0

MYPORT=0

Start:

 for loop=1 to 7

 myport.0[loop]=1 'High

 gosub driveport

 pause 1000

 myport.0[loop]=0 'Low

 gosub driveport

 next loop

goto start

DrivePort:

 RELAYA = myport.1

 RELAYB = MYPORT.2

 RELAYC = MYPORT.3

 RELAYD = MYPORT.4

 RELAYE = MYPORT.5

 RELAYF = MYPORT.6

 RELAYG = MYPORT.7

 return

END

