
Acquired from: 
 
   ftp.adelaide.edu.au:/pub/rocksoft/crc_v3.txt 
   or ftp://ftp.rocksoft.com/papers/crc_v3.txt 
   or http://www.repairfaq.org/filipg/LINK/F_crc_v3.html 
 
 
A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS 
================================================== 
"Everything you wanted to know about CRC algorithms, but were afraid 
to ask for fear that errors in your understanding might be detected." 
 
Version : 3. 
Date    : 19 August 1993. 
Author  : Ross N. Williams. 
Net     : ross@guest.adelaide.edu.au. 
FTP     : ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txt 
Company : Rocksoft^tm Pty Ltd. 
Snail   : 16 Lerwick Avenue, Hazelwood Park 5066, Australia. 
Fax     : +61 8 373-4911 (c/- Internode Systems Pty Ltd). 
Phone   : +61 8 379-9217 (10am to 10pm Adelaide Australia time). 
Note    : "Rocksoft" is a trademark of Rocksoft Pty Ltd, Australia. 
Status  : Copyright (C) Ross Williams, 1993. However, permission is 
          granted to make and distribute verbatim copies of this 
          document provided that this information block and copyright 
          notice is included. Also, the C code modules included 
          in this document are fully public domain. 
Thanks  : Thanks to Jean-loup Gailly (jloup@chorus.fr) and Mark Adler 
          (me@quest.jpl.nasa.gov) who both proof read this document 
          and picked out lots of nits as well as some big fat bugs. 
 
Table of Contents 
----------------- 
    Abstract 
 1. Introduction: Error Detection 
 2. The Need For Complexity 
 3. The Basic Idea Behind CRC Algorithms 
 4. Polynomical Arithmetic 
 5. Binary Arithmetic with No Carries 
 6. A Fully Worked Example 
 7. Choosing A Poly 
 8. A Straightforward CRC Implementation 
 9. A Table-Driven Implementation 
10. A Slightly Mangled Table-Driven Implementation 
11. "Reflected" Table-Driven Implementations 
12. "Reversed" Polys 
13. Initial and Final Values 
14. Defining Algorithms Absolutely 
15. A Parameterized Model For CRC Algorithms 
16. A Catalog of Parameter Sets for Standards 
17. An Implementation of the Model Algorithm 
18. Roll Your Own Table-Driven Implementation 
19. Generating A Lookup Table 
20. Summary 
21. Corrections 
 A. Glossary 
 B. References 
 C. References I Have Detected But Haven't Yet Sighted 
 
 

Page 1 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



Abstract 
-------- 
This document explains CRCs (Cyclic Redundancy Codes) and their 
table-driven implementations in full, precise detail. Much of the 
literature on CRCs, and in particular on their table-driven 
implementations, is a little obscure (or at least seems so to me). 
This document is an attempt to provide a clear and simple no-nonsense 
explanation of CRCs and to absolutely nail down every detail of the 
operation of their high-speed implementations. In addition to this, 
this document presents a parameterized model CRC algorithm called the 
"Rocksoft^tm Model CRC Algorithm". The model algorithm can be 
parameterized to behave like most of the CRC implementations around, 
and so acts as a good reference for describing particular algorithms. 
A low-speed implementation of the model CRC algorithm is provided in 
the C programming language. Lastly there is a section giving two forms 
of high-speed table driven implementations, and providing a program 
that generates CRC lookup tables. 
 
 
1. Introduction: Error Detection 
-------------------------------- 
The aim of an error detection technique is to enable the receiver of a 
message transmitted through a noisy (error-introducing) channel to 
determine whether the message has been corrupted. To do this, the 
transmitter constructs a value (called a checksum) that is a function 
of the message, and appends it to the message. The receiver can then 
use the same function to calculate the checksum of the received 
message and compare it with the appended checksum to see if the 
message was correctly received. For example, if we chose a checksum 
function which was simply the sum of the bytes in the message mod 256 
(i.e. modulo 256), then it might go something as follows. All numbers 
are in decimal. 
 
   Message                    :  6 23  4 
   Message with checksum      :  6 23  4 33 
   Message after transmission :  6 27  4 33 
 
In the above, the second byte of the message was corrupted from 23 to 
27 by the communications channel. However, the receiver can detect 
this by comparing the transmitted checksum (33) with the computer 
checksum of 37 (6 + 27 + 4). If the checksum itself is corrupted, a 
correctly transmitted message might be incorrectly identified as a 
corrupted one. However, this is a safe-side failure. A dangerous-side 
failure occurs where the message and/or checksum is corrupted in a 
manner that results in a transmission that is internally consistent. 
Unfortunately, this possibility is completely unavoidable and the best 
that can be done is to minimize its probability by increasing the 
amount of information in the checksum (e.g. widening the checksum from 
one byte to two bytes). 
 
Other error detection techniques exist that involve performing complex 
transformations on the message to inject it with redundant 
information. However, this document addresses only CRC algorithms, 
which fall into the class of error detection algorithms that leave the 
data intact and append a checksum on the end. i.e.: 
 
      <original intact message> <checksum> 
 
 
2. The Need For Complexity 

Page 2 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



-------------------------- 
In the checksum example in the previous section, we saw how a 
corrupted message was detected using a checksum algorithm that simply 
sums the bytes in the message mod 256: 
 
   Message                    :  6 23  4 
   Message with checksum      :  6 23  4 33 
   Message after transmission :  6 27  4 33 
 
A problem with this algorithm is that it is too simple. If a number of 
random corruptions occur, there is a 1 in 256 chance that they will 
not be detected. For example: 
 
   Message                    :  6 23  4 
   Message with checksum      :  6 23  4 33 
   Message after transmission :  8 20  5 33 
 
To strengthen the checksum, we could change from an 8-bit register to 
a 16-bit register (i.e. sum the bytes mod 65536 instead of mod 256) so 
as to apparently reduce the probability of failure from 1/256 to 
1/65536. While basically a good idea, it fails in this case because 
the formula used is not sufficiently "random"; with a simple summing 
formula, each incoming byte affects roughly only one byte of the 
summing register no matter how wide it is. For example, in the second 
example above, the summing register could be a Megabyte wide, and the 
error would still go undetected. This problem can only be solved by 
replacing the simple summing formula with a more sophisticated formula 
that causes each incoming byte to have an effect on the entire 
checksum register. 
 
Thus, we see that at least two aspects are required to form a strong 
checksum function: 
 
   WIDTH: A register width wide enough to provide a low a-priori 
          probability of failure (e.g. 32-bits gives a 1/2^32 chance 
          of failure). 
 
   CHAOS: A formula that gives each input byte the potential to change 
          any number of bits in the register. 
 
Note: The term "checksum" was presumably used to describe early 
summing formulas, but has now taken on a more general meaning 
encompassing more sophisticated algorithms such as the CRC ones. The 
CRC algorithms to be described satisfy the second condition very well, 
and can be configured to operate with a variety of checksum widths. 
 
 
3. The Basic Idea Behind CRC Algorithms 
--------------------------------------- 
Where might we go in our search for a more complex function than 
summing? All sorts of schemes spring to mind. We could construct 
tables using the digits of pi, or hash each incoming byte with all the 
bytes in the register. We could even keep a large telephone book 
on-line, and use each incoming byte combined with the register bytes 
to index a new phone number which would be the next register value. 
The possibilities are limitless. 
 
However, we do not need to go so far; the next arithmetic step 
suffices. While addition is clearly not strong enough to form an 
effective checksum, it turns out that division is, so long as the 

Page 3 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



divisor is about as wide as the checksum register. 
 
The basic idea of CRC algorithms is simply to treat the message as an 
enormous binary number, to divide it by another fixed binary number, 
and to make the remainder from this division the checksum. Upon 
receipt of the message, the receiver can perform the same division and 
compare the remainder with the "checksum" (transmitted remainder). 
 
Example: Suppose the the message consisted of the two bytes (6,23) as 
in the previous example. These can be considered to be the hexadecimal 
number 0617 which can be considered to be the binary number 
0000-0110-0001-0111. Suppose that we use a checksum register one-byte 
wide and use a constant divisor of 1001, then the checksum is the 
remainder after 0000-0110-0001-0111 is divided by 1001. While in this 
case, this calculation could obviously be performed using common 
garden variety 32-bit registers, in the general case this is messy. So 
instead, we'll do the division using good-'ol long division which you 
learnt in school (remember?). Except this time, it's in binary: 
 
          ...0000010101101 = 00AD =  173 = QUOTIENT 
         ____-___-___-___- 
9= 1001 ) 0000011000010111 = 0617 = 1559 = DIVIDEND 
DIVISOR   0000.,,....,.,,, 
          ----.,,....,.,,, 
           0000,,....,.,,, 
           0000,,....,.,,, 
           ----,,....,.,,, 
            0001,....,.,,, 
            0000,....,.,,, 
            ----,....,.,,, 
             0011....,.,,, 
             0000....,.,,, 
             ----....,.,,, 
              0110...,.,,, 
              0000...,.,,, 
              ----...,.,,, 
               1100..,.,,, 
               1001..,.,,, 
               ====..,.,,, 
                0110.,.,,, 
                0000.,.,,, 
                ----.,.,,, 
                 1100,.,,, 
                 1001,.,,, 
                 ====,.,,, 
                  0111.,,, 
                  0000.,,, 
                  ----.,,, 
                   1110,,, 
                   1001,,, 
                   ====,,, 
                    1011,, 
                    1001,, 
                    ====,, 
                     0101, 
                     0000, 
                     ---- 
                      1011 
                      1001 
                      ==== 

Page 4 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



                      0010 = 02 = 2 = REMAINDER 
 
 
In decimal this is "1559 divided by 9 is 173 with a remainder of 2". 
 
Although the effect of each bit of the input message on the quotient 
is not all that significant, the 4-bit remainder gets kicked about 
quite a lot during the calculation, and if more bytes were added to 
the message (dividend) it's value could change radically again very 
quickly. This is why division works where addition doesn't. 
 
In case you're wondering, using this 4-bit checksum the transmitted 
message would look like this (in hexadecimal): 06172 (where the 0617 
is the message and the 2 is the checksum). The receiver would divide 
0617 by 9 and see whether the remainder was 2. 
 
 
4. Polynomical Arithmetic 
------------------------- 
While the division scheme described in the previous section is very 
very similar to the checksumming schemes called CRC schemes, the CRC 
schemes are in fact a bit weirder, and we need to delve into some 
strange number systems to understand them. 
 
The word you will hear all the time when dealing with CRC algorithms 
is the word "polynomial". A given CRC algorithm will be said to be 
using a particular polynomial, and CRC algorithms in general are said 
to be operating using polynomial arithmetic. What does this mean? 
 
Instead of the divisor, dividend (message), quotient, and remainder 
(as described in the previous section) being viewed as positive 
integers, they are viewed as polynomials with binary coefficients. 
This is done by treating each number as a bit-string whose bits are 
the coefficients of a polynomial. For example, the ordinary number 23 
(decimal) is 17 (hex) and 10111 binary and so it corresponds to the 
polynomial: 
 
   1*x^4 + 0*x^3 + 1*x^2 + 1*x^1 + 1*x^0 
 
or, more simply: 
 
   x^4 + x^2 + x^1 + x^0 
 
Using this technique, the message, and the divisor can be represented 
as polynomials and we can do all our arithmetic just as before, except 
that now it's all cluttered up with Xs. For example, suppose we wanted 
to multiply 1101 by 1011. We can do this simply by multiplying the 
polynomials: 
 
(x^3 + x^2 + x^0)(x^3 + x^1 + x^0) 
= (x^6 + x^4 + x^3 
 + x^5 + x^3 + x^2 
 + x^3 + x^1 + x^0) = x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0 
 
At this point, to get the right answer, we have to pretend that x is 2 
and propagate binary carries from the 3*x^3 yielding 
 
   x^7 + x^3 + x^2 + x^1 + x^0 
 
It's just like ordinary arithmetic except that the base is abstracted 

Page 5 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



and brought into all the calculations explicitly instead of being 
there implicitly. So what's the point? 
 
The point is that IF we pretend that we DON'T know what x is, we CAN'T 
perform the carries. We don't know that 3*x^3 is the same as x^4 + x^3 
because we don't know that x is 2. In this true polynomial arithmetic 
the relationship between all the coefficients is unknown and so the 
coefficients of each power effectively become strongly typed; 
coefficients of x^2 are effectively of a different type to 
coefficients of x^3. 
 
With the coefficients of each power nicely isolated, mathematicians 
came up with all sorts of different kinds of polynomial arithmetics 
simply by changing the rules about how coefficients work. Of these 
schemes, one in particular is relevant here, and that is a polynomial 
arithmetic where the coefficients are calculated MOD 2 and there is no 
carry; all coefficients must be either 0 or 1 and no carries are 
calculated. This is called "polynomial arithmetic mod 2". Thus, 
returning to the earlier example: 
 
(x^3 + x^2 + x^0)(x^3 + x^1 + x^0) 
= (x^6 + x^4 + x^3 
 + x^5 + x^3 + x^2 
 + x^3 + x^1 + x^0) 
= x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0 
 
Under the other arithmetic, the 3*x^3 term was propagated using the 
carry mechanism using the knowledge that x=2. Under "polynomial 
arithmetic mod 2", we don't know what x is, there are no carries, and 
all coefficients have to be calculated mod 2. Thus, the result 
becomes: 
 
= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + x^0 
 
As Knuth [Knuth81] says (p.400): 
 
   "The reader should note the similarity between polynomial 
   arithmetic and multiple-precision arithmetic (Section 4.3.1), where 
   the radix b is substituted for x. The chief difference is that the 
   coefficient u_k of x^k in polynomial arithmetic bears little or no 
   relation to its neighboring coefficients x^{k-1} [and x^{k+1}], so 
   the idea of "carrying" from one place to another is absent. In fact 
   polynomial arithmetic modulo b is essentially identical to multiple 
   precision arithmetic with radix b, except that all carries are 
   suppressed." 
 
Thus polynomical arithmetic mod 2 is just binary arithmetic mod 2 with 
no carries. While polynomials provide useful mathematical machinery in 
more analytical approaches to CRC and error-correction algorithms, for 
the purposes of exposition they provide no extra insight and some 
encumbrance and have been discarded in the remainder of this document 
in favour of direct manipulation of the arithmetical system with which 
they are isomorphic: binary arithmetic with no carry. 
 
 
5. Binary Arithmetic with No Carries 
------------------------------------ 
Having dispensed with polynomials, we can focus on the real arithmetic 
issue, which is that all the arithmetic performed during CRC 
calculations is performed in binary with no carries. Often this is 

Page 6 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



called polynomial arithmetic, but as I have declared the rest of this 
document a polynomial free zone, we'll have to call it CRC arithmetic 
instead. As this arithmetic is a key part of CRC calculations, we'd 
better get used to it. Here we go: 
 
Adding two numbers in CRC arithmetic is the same as adding numbers in 
ordinary binary arithmetic except there is no carry. This means that 
each pair of corresponding bits determine the corresponding output bit 
without reference to any other bit positions. For example: 
 
        10011011 
       +11001010 
        -------- 
        01010001 
        -------- 
 
There are only four cases for each bit position: 
 
   0+0=0 
   0+1=1 
   1+0=1 
   1+1=0  (no carry) 
 
Subtraction is identical: 
 
        10011011 
       -11001010 
        -------- 
        01010001 
        -------- 
 
with 
 
   0-0=0 
   0-1=1  (wraparound) 
   1-0=1 
   1-1=0 
 
In fact, both addition and subtraction in CRC arithmetic is equivalent 
to the XOR operation, and the XOR operation is its own inverse. This 
effectively reduces the operations of the first level of power 
(addition, subtraction) to a single operation that is its own inverse. 
This is a very convenient property of the arithmetic. 
 
By collapsing of addition and subtraction, the arithmetic discards any 
notion of magnitude beyond the power of its highest one bit. While it 
seems clear that 1010 is greater than 10, it is no longer the case 
that 1010 can be considered to be greater than 1001. To see this, note 
that you can get from 1010 to 1001 by both adding and subtracting the 
same quantity: 
 
   1010 = 1010 + 0011 
   1010 = 1010 - 0011 
 
This makes nonsense of any notion of order. 
 
Having defined addition, we can move to multiplication and division. 
Multiplication is absolutely straightforward, being the sum of the 
first number, shifted in accordance with the second number. 
 

Page 7 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



        1101 
      x 1011 
        ---- 
        1101 
       1101. 
      0000.. 
     1101... 
     ------- 
     1111111  Note: The sum uses CRC addition 
     ------- 
 
Division is a little messier as we need to know when "a number goes 
into another number". To do this, we invoke the weak definition of 
magnitude defined earlier: that X is greater than or equal to Y iff 
the position of the highest 1 bit of X is the same or greater than the 
position of the highest 1 bit of Y. Here's a fully worked division 
(nicked from [Tanenbaum81]). 
 
            1100001010 
       _______________ 
10011 ) 11010110110000 
        10011,,.,,.... 
        -----,,.,,.... 
         10011,.,,.... 
         10011,.,,.... 
         -----,.,,.... 
          00001.,,.... 
          00000.,,.... 
          -----.,,.... 
           00010,,.... 
           00000,,.... 
           -----,,.... 
            00101,.... 
            00000,.... 
            -----,.... 
             01011.... 
             00000.... 
             -----.... 
              10110... 
              10011... 
              -----... 
               01010.. 
               00000.. 
               -----.. 
                10100. 
                10011. 
                -----. 
                 01110 
                 00000 
                 ----- 
                  1110 = Remainder 
 
That's really it. Before proceeding further, however, it's worth our 
while playing with this arithmetic a bit to get used to it. 
 
We've already played with addition and subtraction, noticing that they 
are the same thing. Here, though, we should note that in this 
arithmetic A+0=A and A-0=A. This obvious property is very useful 
later. 
 

Page 8 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



In dealing with CRC multiplication and division, it's worth getting a 
feel for the concepts of MULTIPLE and DIVISIBLE. 
 
If a number A is a multiple of B then what this means in CRC 
arithmetic is that it is possible to construct A from zero by XORing 
in various shifts of B. For example, if A was 0111010110 and B was 11, 
we could construct A from B as follows: 
 
                  0111010110 
                = .......11. 
                + ....11.... 
                + ...11..... 
                  .11....... 
 
However, if A is 0111010111, it is not possible to construct it out of 
various shifts of B (can you see why? - see later) so it is said to be 
not divisible by B in CRC arithmetic. 
 
Thus we see that CRC arithmetic is primarily about XORing particular 
values at various shifting offsets. 
 
 
6. A Fully Worked Example 
------------------------- 
Having defined CRC arithmetic, we can now frame a CRC calculation as 
simply a division, because that's all it is! This section fills in the 
details and gives an example. 
 
To perform a CRC calculation, we need to choose a divisor. In maths 
marketing speak the divisor is called the "generator polynomial" or 
simply the "polynomial", and is a key parameter of any CRC algorithm. 
It would probably be more friendly to call the divisor something else, 
but the poly talk is so deeply ingrained in the field that it would 
now be confusing to avoid it. As a compromise, we will refer to the 
CRC polynomial as the "poly". Just think of this number as a sort of 
parrot. "Hello poly!" 
 
You can choose any poly and come up with a CRC algorithm. However, 
some polys are better than others, and so it is wise to stick with the 
tried an tested ones. A later section addresses this issue. 
 
The width (position of the highest 1 bit) of the poly is very 
important as it dominates the whole calculation. Typically, widths of 
16 or 32 are chosen so as to simplify implementation on modern 
computers. The width of a poly is the actual bit position of the 
highest bit. For example, the width of 10011 is 4, not 5. For the 
purposes of example, we will chose a poly of 10011 (of width W of 4). 
 
Having chosen a poly, we can proceed with the calculation. This is 
simply a division (in CRC arithmetic) of the message by the poly. The 
only trick is that W zero bits are appended to the message before the 
CRC is calculated. Thus we have: 
 
   Original message                : 1101011011 
   Poly                            :      10011 
   Message after appending W zeros : 11010110110000 
 
Now we simply divide the augmented message by the poly using CRC 
arithmetic. This is the same division as before: 
 

Page 9 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



            1100001010 = Quotient (nobody cares about the quotient) 
       _______________ 
10011 ) 11010110110000 = Augmented message (1101011011 + 0000) 
=Poly  10011,,.,,.... 
        -----,,.,,.... 
         10011,.,,.... 
         10011,.,,.... 
         -----,.,,.... 
          00001.,,.... 
          00000.,,.... 
          -----.,,.... 
           00010,,.... 
           00000,,.... 
           -----,,.... 
            00101,.... 
            00000,.... 
            -----,.... 
             01011.... 
             00000.... 
             -----.... 
              10110... 
              10011... 
              -----... 
               01010.. 
               00000.. 
               -----.. 
                10100. 
                10011. 
                -----. 
                 01110 
                 00000 
                 ----- 
                  1110 = Remainder = THE CHECKSUM!!!! 
 
The division yields a quotient, which we throw away, and a remainder, 
which is the calculated checksum. This ends the calculation. 
 
Usually, the checksum is then appended to the message and the result 
transmitted. In this case the transmission would be: 11010110111110. 
 
At the other end, the receiver can do one of two things: 
 
   a. Separate the message and checksum. Calculate the checksum for 
      the message (after appending W zeros) and compare the two 
      checksums. 
 
   b. Checksum the whole lot (without appending zeros) and see if it 
      comes out as zero! 
 
These two options are equivalent. However, in the next section, we 
will be assuming option b because it is marginally mathematically 
cleaner. 
 
A summary of the operation of the class of CRC algorithms: 
 
   1. Choose a width W, and a poly G (of width W). 
   2. Append W zero bits to the message. Call this M'. 
   3. Divide M' by G using CRC arithmetic. The remainder is the checksum. 
 
That's all there is to it. 

Page 10 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
7. Choosing A Poly 
------------------ 
Choosing a poly is somewhat of a black art and the reader is referred 
to [Tanenbaum81] (p.130-132) which has a very clear discussion of this 
issue. This section merely aims to put the fear of death into anyone 
who so much as toys with the idea of making up their own poly. If you 
don't care about why one poly might be better than another and just 
want to find out about high-speed implementations, choose one of the 
arithmetically sound polys listed at the end of this section and skip 
to the next section. 
 
First note that the transmitted message T is a multiple of the poly. 
To see this, note that 1) the last W bits of T is the remainder after 
dividing the augmented (by zeros remember) message by the poly, and 2) 
addition is the same as subtraction so adding the remainder pushes the 
value up to the next multiple. Now note that if the transmitted 
message is corrupted in transmission that we will receive T+E where E 
is an error vector (and + is CRC addition (i.e. XOR)). Upon receipt of 
this message, the receiver divides T+E by G. As T mod G is 0, (T+E) 
mod G = E mod G. Thus, the capacity of the poly we choose to catch 
particular kinds of errors will be determined by the set of multiples 
of G, for any corruption E that is a multiple of G will be undetected. 
Our task then is to find classes of G whose multiples look as little 
like the kind of line noise (that will be creating the corruptions) as 
possible. So let's examine the kinds of line noise we can expect. 
 
SINGLE BIT ERRORS: A single bit error means E=1000...0000. We can 
ensure that this class of error is always detected by making sure that 
G has at least two bits set to 1. Any multiple of G will be 
constructed using shifting and adding and it is impossible to 
construct a value with a single bit by shifting an adding a single 
value with more than one bit set, as the two end bits will always 
persist. 
 
TWO-BIT ERRORS: To detect all errors of the form 100...000100...000 
(i.e. E contains two 1 bits) choose a G that does not have multiples 
that are 11, 101, 1001, 10001, 100001, etc. It is not clear to me how 
one goes about doing this (I don't have the pure maths background), 
but Tanenbaum assures us that such G do exist, and cites G with 1 bits 
(15,14,1) turned on as an example of one G that won't divide anything 
less than 1...1 where ... is 32767 zeros. 
 
ERRORS WITH AN ODD NUMBER OF BITS: We can catch all corruptions where 
E has an odd number of bits by choosing a G that has an even number of 
bits. To see this, note that 1) CRC multiplication is simply XORing a 
constant value into a register at various offsets, 2) XORing is simply 
a bit-flip operation, and 3) if you XOR a value with an even number of 
bits into a register, the oddness of the number of 1 bits in the 
register remains invariant. Example: Starting with E=111, attempt to 
flip all three bits to zero by the repeated application of XORing in 
11 at one of the two offsets (i.e. "E=E XOR 011" and "E=E XOR 110") 
This is nearly isomorphic to the "glass tumblers" party puzzle where 
you challenge someone to flip three tumblers by the repeated 
application of the operation of flipping any two. Most of the popular 
CRC polys contain an even number of 1 bits. (Note: Tanenbaum states 
more specifically that all errors with an odd number of bits can be 
caught by making G a multiple of 11). 
 
BURST ERRORS: A burst error looks like E=000...000111...11110000...00. 

Page 11 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



That is, E consists of all zeros except for a run of 1s somewhere 
inside. This can be recast as E=(10000...00)(1111111...111) where 
there are z zeros in the LEFT part and n ones in the RIGHT part. To 
catch errors of this kind, we simply set the lowest bit of G to 1. 
Doing this ensures that LEFT cannot be a factor of G. Then, so long as 
G is wider than RIGHT, the error will be detected. See Tanenbaum for a 
clearer explanation of this; I'm a little fuzzy on this one. Note: 
Tanenbaum asserts that the probability of a burst of length greater 
than W getting through is (0.5)^W. 
 
That concludes the section on the fine art of selecting polys. 
 
Some popular polys are: 
16 bits: (16,12,5,0)                                [X25 standard] 
         (16,15,2,0)                                ["CRC-16"] 
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0)    [Ethernet] 
 
 
8. A Straightforward CRC Implementation 
--------------------------------------- 
That's the end of the theory; now we turn to implementations. To start 
with, we examine an absolutely straight-down-the-middle boring 
straightforward low-speed implementation that doesn't use any speed 
tricks at all. We'll then transform that program progessively until we 
end up with the compact table-driven code we all know and love and 
which some of us would like to understand. 
 
To implement a CRC algorithm all we have to do is implement CRC 
division. There are two reasons why we cannot simply use the divide 
instruction of whatever machine we are on. The first is that we have 
to do the divide in CRC arithmetic. The second is that the dividend 
might be ten megabytes long, and todays processors do not have 
registers that big. 
 
So to implement CRC division, we have to feed the message through a 
division register. At this point, we have to be absolutely precise 
about the message data. In all the following examples the message will 
be considered to be a stream of bytes (each of 8 bits) with bit 7 of 
each byte being considered to be the most significant bit (MSB). The 
bit stream formed from these bytes will be the bit stream with the MSB 
(bit 7) of the first byte first, going down to bit 0 of the first 
byte, and then the MSB of the second byte and so on. 
 
With this in mind, we can sketch an implementation of the CRC 
division. For the purposes of example, consider a poly with W=4 and 
the poly=10111. Then, the perform the division, we need to use a 4-bit 
register: 
 
                  3   2   1   0   Bits 
                +---+---+---+---+ 
       Pop! <-- |   |   |   |   | <----- Augmented message 
                +---+---+---+---+ 
 
             1    0   1   1   1   = The Poly 
 
(Reminder: The augmented message is the message followed by W zero bits.) 
 
To perform the division perform the following: 
 
   Load the register with zero bits. 

Page 12 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



   Augment the message by appending W zero bits to the end of it. 
   While (more message bits) 
      Begin 
      Shift the register left by one bit, reading the next bit of the 
         augmented message into register bit position 0. 
      If (a 1 bit popped out of the register during step 3) 
         Register = Register XOR Poly. 
      End 
   The register now contains the remainder. 
 
(Note: In practice, the IF condition can be tested by testing the top 
 bit of R before performing the shift.) 
 
We will call this algorithm "SIMPLE". 
 
This might look a bit messy, but all we are really doing is 
"subtracting" various powers (i.e. shiftings) of the poly from the 
message until there is nothing left but the remainder. Study the 
manual examples of long division if you don't understand this. 
 
It should be clear that the above algorithm will work for any width W. 
 
 
9. A Table-Driven Implementation 
-------------------------------- 
The SIMPLE algorithm above is a good starting point because it 
corresponds directly to the theory presented so far, and because it is 
so SIMPLE. However, because it operates at the bit level, it is rather 
awkward to code (even in C), and inefficient to execute (it has to 
loop once for each bit). To speed it up, we need to find a way to 
enable the algorithm to process the message in units larger than one 
bit. Candidate quantities are nibbles (4 bits), bytes (8 bits), words 
(16 bits) and longwords (32 bits) and higher if we can achieve it. Of 
these, 4 bits is best avoided because it does not correspond to a byte 
boundary. At the very least, any speedup should allow us to operate at 
byte boundaries, and in fact most of the table driven algorithms 
operate a byte at a time. 
 
For the purposes of discussion, let us switch from a 4-bit poly to a 
32-bit one. Our register looks much the same, except the boxes 
represent bytes instead of bits, and the Poly is 33 bits (one implicit 
1 bit at the top and 32 "active" bits) (W=32). 
 
                   3    2    1    0   Bytes 
                +----+----+----+----+ 
       Pop! <-- |    |    |    |    | <----- Augmented message 
                +----+----+----+----+ 
 
               1<------32 bits------> 
 
The SIMPLE algorithm is still applicable. Let us examine what it does. 
Imagine that the SIMPLE algorithm is in full swing and consider the 
top 8 bits of the 32-bit register (byte 3) to have the values: 
 
   t7 t6 t5 t4 t3 t2 t1 t0 
 
In the next iteration of SIMPLE, t7 will determine whether the Poly 
will be XORed into the entire register. If t7=1, this will happen, 
otherwise it will not. Suppose that the top 8 bits of the poly are g7 
g6.. g0, then after the next iteration, the top byte will be: 

Page 13 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
        t6 t5 t4 t3 t2 t1 t0 ?? 
+ t7 * (g7 g6 g5 g4 g3 g2 g1 g0)    [Reminder: + is XOR] 
 
The NEW top bit (that will control what happens in the next iteration) 
now has the value t6 + t7*g7. The important thing to notice here is 
that from an informational point of view, all the information required 
to calculate the NEW top bit was present in the top TWO bits of the 
original top byte. Similarly, the NEXT top bit can be calculated in 
advance SOLELY from the top THREE bits t7, t6, and t5. In fact, in 
general, the value of the top bit in the register in k iterations can 
be calculated from the top k bits of the register. Let us take this 
for granted for a moment. 
 
Consider for a moment that we use the top 8 bits of the register to 
calculate the value of the top bit of the register during the next 8 
iterations. Suppose that we drive the next 8 iterations using the 
calculated values (which we could perhaps store in a single byte 
register and shift out to pick off each bit). Then we note three 
things: 
 
   * The top byte of the register now doesn't matter. No matter how 
     many times and at what offset the poly is XORed to the top 8 
     bits, they will all be shifted out the right hand side during the 
     next 8 iterations anyway. 
 
 
   * The remaining bits will be shifted left one position and the 
     rightmost byte of the register will be shifted in the next byte 
 
   AND 
 
   * While all this is going on, the register will be subjected to a 
     series of XOR's in accordance with the bits of the pre-calculated 
     control byte. 
 
Now consider the effect of XORing in a constant value at various 
offsets to a register. For example: 
 
       0100010  Register 
       ...0110  XOR this 
       ..0110.  XOR this 
       0110...  XOR this 
       ------- 
       0011000 
       ------- 
 
The point of this is that you can XOR constant values into a register 
to your heart's delight, and in the end, there will exist a value 
which when XORed in with the original register will have the same 
effect as all the other XORs. 
 
Perhaps you can see the solution now. Putting all the pieces together 
we have an algorithm that goes like this: 
 
   While (augmented message is not exhausted) 
      Begin 
      Examine the top byte of the register 
      Calculate the control byte from the top byte of the register 
      Sum all the Polys at various offsets that are to be XORed into 

Page 14 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



         the register in accordance with the control byte 
      Shift the register left by one byte, reading a new message byte 
         into the rightmost byte of the register 
      XOR the summed polys to the register 
      End 
 
As it stands this is not much better than the SIMPLE algorithm. 
However, it turns out that most of the calculation can be precomputed 
and assembled into a table. As a result, the above algorithm can be 
reduced to: 
 
   While (augmented message is not exhaused) 
      Begin 
      Top = top_byte(Register); 
      Register = (Register << 24) | next_augmessage_byte; 
      Register = Register XOR precomputed_table[Top]; 
      End 
 
There! If you understand this, you've grasped the main idea of 
table-driven CRC algorithms. The above is a very efficient algorithm 
requiring just a shift, and OR, an XOR, and a table lookup per byte. 
Graphically, it looks like this: 
 
                   3    2    1    0   Bytes 
                +----+----+----+----+ 
         +-----<|    |    |    |    | <----- Augmented message 
         |      +----+----+----+----+ 
         |                ^ 
         |                | 
         |               XOR 
         |                | 
         |     0+----+----+----+----+       Algorithm 
         v      +----+----+----+----+       --------- 
         |      +----+----+----+----+       1. Shift the register left by 
         |      +----+----+----+----+          one byte, reading in a new 
         |      +----+----+----+----+          message byte. 
         |      +----+----+----+----+       2. Use the top byte just rotated 
         |      +----+----+----+----+          out of the register to index 
         +----->+----+----+----+----+          the table of 256 32-bit values. 
                +----+----+----+----+       3. XOR the table value into the 
                +----+----+----+----+          register. 
                +----+----+----+----+       4. Goto 1 iff more augmented 
                +----+----+----+----+          message bytes. 
             255+----+----+----+----+ 
 
 
In C, the algorithm main loop looks like this: 
 
   r=0; 
   while (len--) 
     { 
      byte t = (r >> 24) & 0xFF; 
      r = (r << 8) | *p++; 
      r^=table[t]; 
     } 
 
where len is the length of the augmented message in bytes, p points to 
the augmented message, r is the register, t is a temporary, and table 
is the computed table. This code can be made even more unreadable as 
follows: 

Page 15 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
   r=0; while (len--) r = ((r << 8) | *p++) ^ t[(r >> 24) & 0xFF]; 
 
This is a very clean, efficient loop, although not a very obvious one 
to the casual observer not versed in CRC theory. We will call this the 
TABLE algorithm. 
 
 
10. A Slightly Mangled Table-Driven Implementation 
-------------------------------------------------- 
Despite the terse beauty of the line 
 
   r=0; while (len--) r = ((r << 8) | *p++) ^ t[(r >> 24) & 0xFF]; 
 
those optimizing hackers couldn't leave it alone. The trouble, you 
see, is that this loop operates upon the AUGMENTED message and in 
order to use this code, you have to append W/8 zero bytes to the end 
of the message before pointing p at it. Depending on the run-time 
environment, this may or may not be a problem; if the block of data 
was handed to us by some other code, it could be a BIG problem. One 
alternative is simply to append the following line after the above 
loop, once for each zero byte: 
 
      for (i=0; i<W/4; i++) r = (r << 8) ^ t[(r >> 24) & 0xFF]; 
 
This looks like a sane enough solution to me. However, at the further 
expense of clarity (which, you must admit, is already a pretty scare 
commodity in this code) we can reorganize this small loop further so 
as to avoid the need to either augment the message with zero bytes, or 
to explicitly process zero bytes at the end as above. To explain the 
optimization, we return to the processing diagram given earlier. 
 
                   3    2    1    0   Bytes 
                +----+----+----+----+ 
         +-----<|    |    |    |    | <----- Augmented message 
         |      +----+----+----+----+ 
         |                ^ 
         |                | 
         |               XOR 
         |                | 
         |     0+----+----+----+----+       Algorithm 
         v      +----+----+----+----+       --------- 
         |      +----+----+----+----+       1. Shift the register left by 
         |      +----+----+----+----+          one byte, reading in a new 
         |      +----+----+----+----+          message byte. 
         |      +----+----+----+----+       2. Use the top byte just rotated 
         |      +----+----+----+----+          out of the register to index 
         +----->+----+----+----+----+          the table of 256 32-bit values. 
                +----+----+----+----+       3. XOR the table value into the 
                +----+----+----+----+          register. 
                +----+----+----+----+       4. Goto 1 iff more augmented 
                +----+----+----+----+          message bytes. 
             255+----+----+----+----+ 
 
Now, note the following facts: 
 
TAIL: The W/4 augmented zero bytes that appear at the end of the 
      message will be pushed into the register from the right as all 
      the other bytes are, but their values (0) will have no effect 
      whatsoever on the register because 1) XORing with zero does not 

Page 16 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



      change the target byte, and 2) the four bytes are never 
      propagated out the left side of the register where their 
      zeroness might have some sort of influence. Thus, the sole 
      function of the W/4 augmented zero bytes is to drive the 
      calculation for another W/4 byte cycles so that the end of the 
      REAL data passes all the way through the register. 
 
HEAD: If the initial value of the register is zero, the first four 
      iterations of the loop will have the sole effect of shifting in 
      the first four bytes of the message from the right. This is 
      because the first 32 control bits are all zero and so nothing is 
      XORed into the register. Even if the initial value is not zero, 
      the first 4 byte iterations of the algorithm will have the sole 
      effect of shifting the first 4 bytes of the message into the 
      register and then XORing them with some constant value (that is 
      a function of the initial value of the register). 
 
These facts, combined with the XOR property 
 
   (A xor B) xor C = A xor (B xor C) 
 
mean that message bytes need not actually travel through the W/4 bytes 
of the register. Instead, they can be XORed into the top byte just 
before it is used to index the lookup table. This leads to the 
following modified version of the algorithm. 
 
 
         +-----<Message (non augmented) 
         | 
         v         3    2    1    0   Bytes 
         |      +----+----+----+----+ 
        XOR----<|    |    |    |    | 
         |      +----+----+----+----+ 
         |                ^ 
         |                | 
         |               XOR 
         |                | 
         |     0+----+----+----+----+       Algorithm 
         v      +----+----+----+----+       --------- 
         |      +----+----+----+----+       1. Shift the register left by 
         |      +----+----+----+----+          one byte, reading in a new 
         |      +----+----+----+----+          message byte. 
         |      +----+----+----+----+       2. XOR the top byte just rotated 
         |      +----+----+----+----+          out of the register with the 
         +----->+----+----+----+----+          next message byte to yield an 
                +----+----+----+----+          index into the table ([0,255]). 
                +----+----+----+----+       3. XOR the table value into the 
                +----+----+----+----+          register. 
                +----+----+----+----+       4. Goto 1 iff more augmented 
             255+----+----+----+----+          message bytes. 
 
 
Note: The initial register value for this algorithm must be the 
initial value of the register for the previous algorithm fed through 
the table four times. Note: The table is such that if the previous 
algorithm used 0, the new algorithm will too. 
 
This is an IDENTICAL algorithm and will yield IDENTICAL results. The C 
code looks something like this: 
 

Page 17 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



   r=0; while (len--) r = (r<<8) ^ t[(r >> 24) ^ *p++]; 
 
and THIS is the code that you are likely to find inside current 
table-driven CRC implementations. Some FF masks might have to be ANDed 
in here and there for portability's sake, but basically, the above 
loop is IT. We will call this the DIRECT TABLE ALGORITHM. 
 
During the process of trying to understand all this stuff, I managed 
to derive the SIMPLE algorithm and the table-driven version derived 
from that. However, when I compared my code with the code found in 
real-implementations, I was totally bamboozled as to why the bytes 
were being XORed in at the wrong end of the register! It took quite a 
while before I figured out that theirs and my algorithms were actually 
the same. Part of why I am writing this document is that, while the 
link between division and my earlier table-driven code is vaguely 
apparent, any such link is fairly well erased when you start pumping 
bytes in at the "wrong end" of the register. It looks all wrong! 
 
If you've got this far, you not only understand the theory, the 
practice, the optimized practice, but you also understand the real 
code you are likely to run into. Could get any more complicated? Yes 
it can. 
 
 
 
11. "Reflected" Table-Driven Implementations 
-------------------------------------------- 
Despite the fact that the above code is probably optimized about as 
much as it could be, this did not stop some enterprising individuals 
from making things even more complicated. To understand how this 
happened, we have to enter the world of hardware. 
 
DEFINITION: A value/register is reflected if it's bits are swapped 
around its centre. For example: 0101 is the 4-bit reflection of 1010. 
0011 is the reflection of 1100. 
0111-0101-1010-1111-0010-0101-1011-1100 is the reflection of 
0011-1101-1010-0100-1111-0101-1010-1110. 
 
Turns out that UARTs (those handy little chips that perform serial IO) 
are in the habit of transmitting each byte with the least significant 
bit (bit 0) first and the most significant bit (bit 7) last (i.e. 
reflected). An effect of this convention is that hardware engineers 
constructing hardware CRC calculators that operate at the bit level 
took to calculating CRCs of bytes streams with each of the bytes 
reflected within itself. The bytes are processed in the same order, 
but the bits in each byte are swapped; bit 0 is now bit 7, bit 1 is 
now bit 6, and so on. Now this wouldn't matter much if this convention 
was restricted to hardware land. However it seems that at some stage 
some of these CRC values were presented at the software level and 
someone had to write some code that would interoperate with the 
hardware CRC calculation. 
 
In this situation, a normal sane software engineer would simply 
reflect each byte before processing it. However, it would seem that 
normal sane software engineers were thin on the ground when this early 
ground was being broken, because instead of reflecting the bytes, 
whoever was responsible held down the byte and reflected the world, 
leading to the following "reflected" algorithm which is identical to 
the previous one except that everything is reflected except the input 
bytes. 

Page 18 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
 
             Message (non augmented) >-----+ 
                                           | 
           Bytes   0    1    2    3        v 
                +----+----+----+----+      | 
                |    |    |    |    |>----XOR 
                +----+----+----+----+      | 
                          ^                | 
                          |                | 
                         XOR               | 
                          |                | 
                +----+----+----+----+0     | 
                +----+----+----+----+      v 
                +----+----+----+----+      | 
                +----+----+----+----+      | 
                +----+----+----+----+      | 
                +----+----+----+----+      | 
                +----+----+----+----+      | 
                +----+----+----+----+<-----+ 
                +----+----+----+----+ 
                +----+----+----+----+ 
                +----+----+----+----+ 
                +----+----+----+----+ 
                +----+----+----+----+255 
 
Notes: 
 
   * The table is identical to the one in the previous algorithm 
   except that each entry has been reflected. 
 
   * The initial value of the register is the same as in the previous 
   algorithm except that it has been reflected. 
 
   * The bytes of the message are processed in the same order as 
   before (i.e. the message itself is not reflected). 
 
   * The message bytes themselves don't need to be explicitly 
   reflected, because everything else has been! 
 
At the end of execution, the register contains the reflection of the 
final CRC value (remainder). Actually, I'm being rather hard on 
whoever cooked this up because it seems that hardware implementations 
of the CRC algorithm used the reflected checksum value and so 
producing a reflected CRC was just right. In fact reflecting the world 
was probably a good engineering solution - if a confusing one. 
 
We will call this the REFLECTED algorithm. 
 
Whether or not it made sense at the time, the effect of having 
reflected algorithms kicking around the world's FTP sites is that 
about half the CRC implementations one runs into are reflected and the 
other half not. It's really terribly confusing. In particular, it 
would seem to me that the casual reader who runs into a reflected, 
table-driven implementation with the bytes "fed in the wrong end" 
would have Buckley's chance of ever connecting the code to the concept 
of binary mod 2 division. 
 
It couldn't get any more confusing could it? Yes it could. 
 

Page 19 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
12. "Reversed" Polys 
-------------------- 
As if reflected implementations weren't enough, there is another 
concept kicking around which makes the situation bizaarly confusing. 
The concept is reversed Polys. 
 
It turns out that the reflection of good polys tend to be good polys 
too! That is, if G=11101 is a good poly value, then 10111 will be as 
well. As a consequence, it seems that every time an organization (such 
as CCITT) standardizes on a particularly good poly ("polynomial"), 
those in the real world can't leave the poly's reflection alone 
either. They just HAVE to use it. As a result, the set of "standard" 
poly's has a corresponding set of reflections, which are also in use. 
To avoid confusion, we will call these the "reversed" polys. 
 
   X25   standard: 1-0001-0000-0010-0001 
   X25   reversed: 1-0000-1000-0001-0001 
 
   CRC16 standard: 1-1000-0000-0000-0101 
   CRC16 reversed: 1-0100-0000-0000-0011 
 
Note that here it is the entire poly that is being reflected/reversed, 
not just the bottom W bits. This is an important distinction. In the 
reflected algorithm described in the previous section, the poly used 
in the reflected algorithm was actually identical to that used in the 
non-reflected algorithm; all that had happened is that the bytes had 
effectively been reflected. As such, all the 16-bit/32-bit numbers in 
the algorithm had to be reflected. In contrast, the ENTIRE poly 
includes the implicit one bit at the top, and so reversing a poly is 
not the same as reflecting its bottom 16 or 32 bits. 
 
The upshot of all this is that a reflected algorithm is not equivalent 
to the original algorithm with the poly reflected. Actually, this is 
probably less confusing than if they were duals. 
 
If all this seems a bit unclear, don't worry, because we're going to 
sort it all out "real soon now". Just one more section to go before 
that. 
 
 
13. Initial and Final Values 
---------------------------- 
In addition to the complexity already seen, CRC algorithms differ from 
each other in two other regards: 
 
   * The initial value of the register. 
 
   * The value to be XORed with the final register value. 
 
For example, the "CRC32" algorithm initializes its register to 
FFFFFFFF and XORs the final register value with FFFFFFFF. 
 
Most CRC algorithms initialize their register to zero. However, some 
initialize it to a non-zero value. In theory (i.e. with no assumptions 
about the message), the initial value has no affect on the strength of 
the CRC algorithm, the initial value merely providing a fixed starting 
point from which the register value can progress. However, in 
practice, some messages are more likely than others, and it is wise to 
initialize the CRC algorithm register to a value that does not have 

Page 20 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



"blind spots" that are likely to occur in practice. By "blind spot" is 
meant a sequence of message bytes that do not result in the register 
changing its value. In particular, any CRC algorithm that initializes 
its register to zero will have a blind spot of zero when it starts up 
and will be unable to "count" a leading run of zero bytes. As a 
leading run of zero bytes is quite common in real messages, it is wise 
to initialize the algorithm register to a non-zero value. 
 
 
14. Defining Algorithms Absolutely 
---------------------------------- 
At this point we have covered all the different aspects of 
table-driven CRC algorithms. As there are so many variations on these 
algorithms, it is worth trying to establish a nomenclature for them. 
This section attempts to do that. 
 
We have seen that CRC algorithms vary in: 
 
   * Width of the poly (polynomial). 
   * Value of the poly. 
   * Initial value for the register. 
   * Whether the bits of each byte are reflected before being processed. 
   * Whether the algorithm feeds input bytes through the register or 
     xors them with a byte from one end and then straight into the table. 
   * Whether the final register value should be reversed (as in reflected 
     versions). 
   * Value to XOR with the final register value. 
 
In order to be able to talk about particular CRC algorithms, we need 
to able to define them more precisely than this. For this reason, the 
next section attempts to provide a well-defined parameterized model 
for CRC algorithms. To refer to a particular algorithm, we need then 
simply specify the algorithm in terms of parameters to the model. 
 
 
15. A Parameterized Model For CRC Algorithms 
-------------------------------------------- 
In this section we define a precise parameterized model CRC algorithm 
which, for want of a better name, we will call the "Rocksoft^tm Model 
CRC Algorithm" (and why not? Rocksoft^tm could do with some free 
advertising :-). 
 
The most important aspect of the model algorithm is that it focusses 
exclusively on functionality, ignoring all implementation details. The 
aim of the exercise is to construct a way of referring precisely to 
particular CRC algorithms, regardless of how confusingly they are 
implemented. To this end, the model must be as simple and precise as 
possible, with as little confusion as possible. 
 
The Rocksoft^tm Model CRC Algorithm is based essentially on the DIRECT 
TABLE ALGORITHM specified earlier. However, the algorithm has to be 
further parameterized to enable it to behave in the same way as some 
of the messier algorithms out in the real world. 
 
To enable the algorithm to behave like reflected algorithms, we 
provide a boolean option to reflect the input bytes, and a boolean 
option to specify whether to reflect the output checksum value. By 
framing reflection as an input/output transformation, we avoid the 
confusion of having to mentally map the parameters of reflected and 
non-reflected algorithms. 

Page 21 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



 
An extra parameter allows the algorithm's register to be initialized 
to a particular value. A further parameter is XORed with the final 
value before it is returned. 
 
By putting all these pieces together we end up with the parameters of 
the algorithm: 
 
   NAME: This is a name given to the algorithm. A string value. 
 
   WIDTH: This is the width of the algorithm expressed in bits. This 
   is one less than the width of the Poly. 
 
   POLY: This parameter is the poly. This is a binary value that 
   should be specified as a hexadecimal number. The top bit of the 
   poly should be omitted. For example, if the poly is 10110, you 
   should specify 06. An important aspect of this parameter is that it 
   represents the unreflected poly; the bottom bit of this parameter 
   is always the LSB of the divisor during the division regardless of 
   whether the algorithm being modelled is reflected. 
 
   INIT: This parameter specifies the initial value of the register 
   when the algorithm starts. This is the value that is to be assigned 
   to the register in the direct table algorithm. In the table 
   algorithm, we may think of the register always commencing with the 
   value zero, and this value being XORed into the register after the 
   N'th bit iteration. This parameter should be specified as a 
   hexadecimal number. 
 
   REFIN: This is a boolean parameter. If it is FALSE, input bytes are 
   processed with bit 7 being treated as the most significant bit 
   (MSB) and bit 0 being treated as the least significant bit. If this 
   parameter is FALSE, each byte is reflected before being processed. 
 
   REFOUT: This is a boolean parameter. If it is set to FALSE, the 
   final value in the register is fed into the XOROUT stage directly, 
   otherwise, if this parameter is TRUE, the final register value is 
   reflected first. 
 
   XOROUT: This is an W-bit value that should be specified as a 
   hexadecimal number. It is XORed to the final register value (after 
   the REFOUT) stage before the value is returned as the official 
   checksum. 
 
   CHECK: This field is not strictly part of the definition, and, in 
   the event of an inconsistency between this field and the other 
   field, the other fields take precedence. This field is a check 
   value that can be used as a weak validator of implementations of 
   the algorithm. The field contains the checksum obtained when the 
   ASCII string "123456789" is fed through the specified algorithm 
   (i.e. 313233... (hexadecimal)). 
 
With these parameters defined, the model can now be used to specify a 
particular CRC algorithm exactly. Here is an example specification for 
a popular form of the CRC-16 algorithm. 
 
   Name   : "CRC-16" 
   Width  : 16 
   Poly   : 8005 
   Init   : 0000 

Page 22 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



   RefIn  : True 
   RefOut : True 
   XorOut : 0000 
   Check  : BB3D 
 
 
16. A Catalog of Parameter Sets for Standards 
--------------------------------------------- 
At this point, I would like to give a list of the specifications for 
commonly used CRC algorithms. However, most of the algorithms that I 
have come into contact with so far are specified in such a vague way 
that this has not been possible. What I can provide is a list of polys 
for various CRC standards I have heard of: 
 
   X25   standard : 1021       [CRC-CCITT, ADCCP, SDLC/HDLC] 
   X25   reversed : 0811 
 
   CRC16 standard : 8005 
   CRC16 reversed : 4003       [LHA] 
 
   CRC32          : 04C11DB7   [PKZIP, AUTODIN II, Ethernet, FDDI] 
 
I would be interested in hearing from anyone out there who can tie 
down the complete set of model parameters for any of these standards. 
 
However, a program that was kicking around seemed to imply the 
following specifications. Can anyone confirm or deny them (or provide 
the check values (which I couldn't be bothered coding up and 
calculating)). 
 
   Name   : "CRC-16/CITT" 
   Width  : 16 
   Poly   : 1021 
   Init   : FFFF 
   RefIn  : False 
   RefOut : False 
   XorOut : 0000 
   Check  : ? 
 
 
   Name   : "XMODEM" 
   Width  : 16 
   Poly   : 8408 
   Init   : 0000 
   RefIn  : True 
   RefOut : True 
   XorOut : 0000 
   Check  : ? 
 
 
   Name   : "ARC" 
   Width  : 16 
   Poly   : 8005 
   Init   : 0000 
   RefIn  : True 
   RefOut : True 
   XorOut : 0000 
   Check  : ? 
 
Here is the specification for the CRC-32 algorithm which is reportedly 

Page 23 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



used in PKZip, AUTODIN II, Ethernet, and FDDI. 
 
   Name   : "CRC-32" 
   Width  : 32 
   Poly   : 04C11DB7 
   Init   : FFFFFFFF 
   RefIn  : True 
   RefOut : True 
   XorOut : FFFFFFFF 
   Check  : CBF43926 
 
 
17. An Implementation of the Model Algorithm 
-------------------------------------------- 
Here is an implementation of the model algorithm in the C programming 
language. The implementation consists of a header file (.h) and an 
implementation file (.c). If you're reading this document in a 
sequential scroller, you can skip this code by searching for the 
string "Roll Your Own". 
 
To ensure that the following code is working, configure it for the 
CRC-16 and CRC-32 algorithms given above and ensure that they produce 
the specified "check" checksum when fed the test string "123456789" 
(see earlier). 
 
/******************************************************************************/ 
/*                             Start of crcmodel.h                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* Author : Ross Williams (ross@guest.adelaide.edu.au.).                      */ 
/* Date   : 3 June 1993.                                                      */ 
/* Status : Public domain.                                                    */ 
/*                                                                            */ 
/* Description : This is the header (.h) file for the reference               */ 
/* implementation of the Rocksoft^tm Model CRC Algorithm. For more            */ 
/* information on the Rocksoft^tm Model CRC Algorithm, see the document       */ 
/* titled "A Painless Guide to CRC Error Detection Algorithms" by Ross        */ 
/* Williams (ross@guest.adelaide.edu.au.). This document is likely to be in   */ 
/* "ftp.adelaide.edu.au/pub/rocksoft".                                        */ 
/*                                                                            */ 
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia.    */ 
/*                                                                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* How to Use This Package                                                    */ 
/* -----------------------                                                    */ 
/* Step 1: Declare a variable of type cm_t. Declare another variable          */ 
/*         (p_cm say) of type p_cm_t and initialize it to point to the first  */ 
/*         variable (e.g. p_cm_t p_cm = &cm_t).                               */ 
/*                                                                            */ 
/* Step 2: Assign values to the parameter fields of the structure.            */ 
/*         If you don't know what to assign, see the document cited earlier.  */ 
/*         For example:                                                       */ 
/*            p_cm->cm_width = 16;                                            */ 
/*            p_cm->cm_poly  = 0x8005L;                                       */ 
/*            p_cm->cm_init  = 0L;                                            */ 
/*            p_cm->cm_refin = TRUE;                                          */ 
/*            p_cm->cm_refot = TRUE;                                          */ 
/*            p_cm->cm_xorot = 0L;                                            */ 
/*         Note: Poly is specified without its top bit (18005 becomes 8005).  */ 

Page 24 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



/*         Note: Width is one bit less than the raw poly width.               */ 
/*                                                                            */ 
/* Step 3: Initialize the instance with a call cm_ini(p_cm);                  */ 
/*                                                                            */ 
/* Step 4: Process zero or more message bytes by placing zero or more         */ 
/*         successive calls to cm_nxt. Example: cm_nxt(p_cm,ch);              */ 
/*                                                                            */ 
/* Step 5: Extract the CRC value at any time by calling crc = cm_crc(p_cm);   */ 
/*         If the CRC is a 16-bit value, it will be in the bottom 16 bits.    */ 
/*                                                                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* Design Notes                                                               */ 
/* ------------                                                               */ 
/* PORTABILITY: This package has been coded very conservatively so that       */ 
/* it will run on as many machines as possible. For example, all external     */ 
/* identifiers have been restricted to 6 characters and all internal ones to  */ 
/* 8 characters. The prefix cm (for Crc Model) is used as an attempt to avoid */ 
/* namespace collisions. This package is endian independent.                  */ 
/*                                                                            */ 
/* EFFICIENCY: This package (and its interface) is not designed for           */ 
/* speed. The purpose of this package is to act as a well-defined reference   */ 
/* model for the specification of CRC algorithms. If you want speed, cook up  */ 
/* a specific table-driven implementation as described in the document cited  */ 
/* above. This package is designed for validation only; if you have found or  */ 
/* implemented a CRC algorithm and wish to describe it as a set of parameters */ 
/* to the Rocksoft^tm Model CRC Algorithm, your CRC algorithm implementation  */ 
/* should behave identically to this package under those parameters.          */ 
/*                                                                            */ 
/******************************************************************************/ 
 
/* The following #ifndef encloses this entire */ 
/* header file, rendering it indempotent.     */ 
#ifndef CM_DONE 
#define CM_DONE 
 
/******************************************************************************/ 
 
/* The following definitions are extracted from my style header file which    */ 
/* would be cumbersome to distribute with this package. The DONE_STYLE is the */ 
/* idempotence symbol used in my style header file.                           */ 
 
#ifndef DONE_STYLE 
 
typedef unsigned long   ulong; 
typedef unsigned        bool; 
typedef unsigned char * p_ubyte_; 
 
#ifndef TRUE 
#define FALSE 0 
#define TRUE  1 
#endif 
 
/* Change to the second definition if you don't have prototypes. */ 
#define P_(A) A 
/* #define P_(A) () */ 
 
/* Uncomment this definition if you don't have void. */ 
/* typedef int void; */ 
 

Page 25 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



#endif 
 
/******************************************************************************/ 
 
/* CRC Model Abstract Type */ 
/* ----------------------- */ 
/* The following type stores the context of an executing instance of the  */ 
/* model algorithm. Most of the fields are model parameters which must be */ 
/* set before the first initializing call to cm_ini.                      */ 
typedef struct 
  { 
   int   cm_width;   /* Parameter: Width in bits [8,32].       */ 
   ulong cm_poly;    /* Parameter: The algorithm's polynomial. */ 
   ulong cm_init;    /* Parameter: Initial register value.     */ 
   bool  cm_refin;   /* Parameter: Reflect input bytes?        */ 
   bool  cm_refot;   /* Parameter: Reflect output CRC?         */ 
   ulong cm_xorot;   /* Parameter: XOR this to output CRC.     */ 
 
   ulong cm_reg;     /* Context: Context during execution.     */ 
  } cm_t; 
typedef cm_t *p_cm_t; 
 
/******************************************************************************/ 
 
/* Functions That Implement The Model */ 
/* ---------------------------------- */ 
/* The following functions animate the cm_t abstraction. */ 
 
void cm_ini P_((p_cm_t p_cm)); 
/* Initializes the argument CRC model instance.          */ 
/* All parameter fields must be set before calling this. */ 
 
void cm_nxt P_((p_cm_t p_cm,int ch)); 
/* Processes a single message byte [0,255]. */ 
 
void cm_blk P_((p_cm_t p_cm,p_ubyte_ blk_adr,ulong blk_len)); 
/* Processes a block of message bytes. */ 
 
ulong cm_crc P_((p_cm_t p_cm)); 
/* Returns the CRC value for the message bytes processed so far. */ 
 
/******************************************************************************/ 
 
/* Functions For Table Calculation */ 
/* ------------------------------- */ 
/* The following function can be used to calculate a CRC lookup table.        */ 
/* It can also be used at run-time to create or check static tables.          */ 
 
ulong cm_tab P_((p_cm_t p_cm,int index)); 
/* Returns the i'th entry for the lookup table for the specified algorithm.   */ 
/* The function examines the fields cm_width, cm_poly, cm_refin, and the      */ 
/* argument table index in the range [0,255] and returns the table entry in   */ 
/* the bottom cm_width bytes of the return value.                             */ 
 
/******************************************************************************/ 
 
/* End of the header file idempotence #ifndef */ 
#endif 
 
/******************************************************************************/ 

Page 26 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



/*                             End of crcmodel.h                              */ 
/******************************************************************************/ 
 
 
/******************************************************************************/ 
/*                             Start of crcmodel.c                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* Author : Ross Williams (ross@guest.adelaide.edu.au.).                      */ 
/* Date   : 3 June 1993.                                                      */ 
/* Status : Public domain.                                                    */ 
/*                                                                            */ 
/* Description : This is the implementation (.c) file for the reference       */ 
/* implementation of the Rocksoft^tm Model CRC Algorithm. For more            */ 
/* information on the Rocksoft^tm Model CRC Algorithm, see the document       */ 
/* titled "A Painless Guide to CRC Error Detection Algorithms" by Ross        */ 
/* Williams (ross@guest.adelaide.edu.au.). This document is likely to be in   */ 
/* "ftp.adelaide.edu.au/pub/rocksoft".                                        */ 
/*                                                                            */ 
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia.    */ 
/*                                                                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* Implementation Notes                                                       */ 
/* --------------------                                                       */ 
/* To avoid inconsistencies, the specification of each function is not echoed */ 
/* here. See the header file for a description of these functions.            */ 
/* This package is light on checking because I want to keep it short and      */ 
/* simple and portable (i.e. it would be too messy to distribute my entire    */ 
/* C culture (e.g. assertions package) with this package.                     */ 
/*                                                                            */ 
/******************************************************************************/ 
 
#include "crcmodel.h" 
 
/******************************************************************************/ 
 
/* The following definitions make the code more readable. */ 
 
#define BITMASK(X) (1L << (X)) 
#define MASK32 0xFFFFFFFFL 
#define LOCAL static 
 
/******************************************************************************/ 
 
LOCAL ulong reflect P_((ulong v,int b)); 
LOCAL ulong reflect (v,b) 
/* Returns the value v with the bottom b [0,32] bits reflected. */ 
/* Example: reflect(0x3e23L,3) == 0x3e26                        */ 
ulong v; 
int   b; 
{ 
 int   i; 
 ulong t = v; 
 for (i=0; i<b; i++) 
   { 
    if (t & 1L) 
       v|=  BITMASK((b-1)-i); 
    else 
       v&= ~BITMASK((b-1)-i); 

Page 27 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



    t>>=1; 
   } 
 return v; 
} 
 
/******************************************************************************/ 
 
LOCAL ulong widmask P_((p_cm_t)); 
LOCAL ulong widmask (p_cm) 
/* Returns a longword whose value is (2^p_cm->cm_width)-1.     */ 
/* The trick is to do this portably (e.g. without doing <<32). */ 
p_cm_t p_cm; 
{ 
 return (((1L<<(p_cm->cm_width-1))-1L)<<1)|1L; 
} 
 
/******************************************************************************/ 
 
void cm_ini (p_cm) 
p_cm_t p_cm; 
{ 
 p_cm->cm_reg = p_cm->cm_init; 
} 
 
/******************************************************************************/ 
 
void cm_nxt (p_cm,ch) 
p_cm_t p_cm; 
int    ch; 
{ 
 int   i; 
 ulong uch  = (ulong) ch; 
 ulong topbit = BITMASK(p_cm->cm_width-1); 
 
 if (p_cm->cm_refin) uch = reflect(uch,8); 
 p_cm->cm_reg ^= (uch << (p_cm->cm_width-8)); 
 for (i=0; i<8; i++) 
   { 
    if (p_cm->cm_reg & topbit) 
       p_cm->cm_reg = (p_cm->cm_reg << 1) ^ p_cm->cm_poly; 
    else 
       p_cm->cm_reg <<= 1; 
    p_cm->cm_reg &= widmask(p_cm); 
   } 
} 
 
/******************************************************************************/ 
 
void cm_blk (p_cm,blk_adr,blk_len) 
p_cm_t   p_cm; 
p_ubyte_ blk_adr; 
ulong    blk_len; 
{ 
 while (blk_len--) cm_nxt(p_cm,*blk_adr++); 
} 
 
/******************************************************************************/ 
 
ulong cm_crc (p_cm) 
p_cm_t p_cm; 

Page 28 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



{ 
 if (p_cm->cm_refot) 
    return p_cm->cm_xorot ^ reflect(p_cm->cm_reg,p_cm->cm_width); 
 else 
    return p_cm->cm_xorot ^ p_cm->cm_reg; 
} 
 
/******************************************************************************/ 
 
ulong cm_tab (p_cm,index) 
p_cm_t p_cm; 
int    index; 
{ 
 int   i; 
 ulong r; 
 ulong topbit = BITMASK(p_cm->cm_width-1); 
 ulong inbyte = (ulong) index; 
 
 if (p_cm->cm_refin) inbyte = reflect(inbyte,8); 
 r = inbyte << (p_cm->cm_width-8); 
 for (i=0; i<8; i++) 
    if (r & topbit) 
       r = (r << 1) ^ p_cm->cm_poly; 
    else 
       r<<=1; 
 if (p_cm->cm_refin) r = reflect(r,p_cm->cm_width); 
 return r & widmask(p_cm); 
} 
 
/******************************************************************************/ 
/*                             End of crcmodel.c                              */ 
/******************************************************************************/ 
 
 
18. Roll Your Own Table-Driven Implementation 
--------------------------------------------- 
Despite all the fuss I've made about understanding and defining CRC 
algorithms, the mechanics of their high-speed implementation remains 
trivial. There are really only two forms: normal and reflected. Normal 
shifts to the left and covers the case of algorithms with Refin=FALSE 
and Refot=FALSE. Reflected shifts to the right and covers algorithms 
with both those parameters true. (If you want one parameter true and 
the other false, you'll have to figure it out for yourself!) The 
polynomial is embedded in the lookup table (to be discussed). The 
other parameters, Init and XorOt can be coded as macros. Here is the 
32-bit normal form (the 16-bit form is similar). 
 
   unsigned long crc_normal (); 
   unsigned long crc_normal (blk_adr,blk_len) 
   unsigned char *blk_adr; 
   unsigned long  blk_len; 
   { 
    unsigned long crc = INIT; 
    while (blk_len--) 
       crc = crctable[((crc>>24) ^ *blk_adr++) & 0xFFL] ^ (crc << 8); 
    return crc ^ XOROT; 
   } 
 
Here is the reflected form: 
 

Page 29 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



   unsigned long crc_reflected (); 
   unsigned long crc_reflected (blk_adr,blk_len) 
   unsigned char *blk_adr; 
   unsigned long  blk_len; 
   { 
    unsigned long crc = INIT_REFLECTED; 
    while (blk_len--) 
       crc = crctable[(crc ^ *blk_adr++) & 0xFFL] ^ (crc >> 8)); 
    return crc ^ XOROT; 
   } 
 
Note: I have carefully checked the above two code fragments, but I 
haven't actually compiled or tested them. This shouldn't matter to 
you, as, no matter WHAT you code, you will always be able to tell if 
you have got it right by running whatever you have created against the 
reference model given earlier. The code fragments above are really 
just a rough guide. The reference model is the definitive guide. 
 
Note: If you don't care much about speed, just use the reference model 
code! 
 
 
19. Generating A Lookup Table 
----------------------------- 
The only component missing from the normal and reversed code fragments 
in the previous section is the lookup table. The lookup table can be 
computed at run time using the cm_tab function of the model package 
given earlier, or can be pre-computed and inserted into the C program. 
In either case, it should be noted that the lookup table depends only 
on the POLY and RefIn (and RefOt) parameters. Basically, the 
polynomial determines the table, but you can generate a reflected 
table too if you want to use the reflected form above. 
 
The following program generates any desired 16-bit or 32-bit lookup 
table. Skip to the word "Summary" if you want to skip over this code. 
 
 
 
/******************************************************************************/ 
/*                             Start of crctable.c                            */ 
/******************************************************************************/ 
/*                                                                            */ 
/* Author  : Ross Williams (ross@guest.adelaide.edu.au.).                     */ 
/* Date    : 3 June 1993.                                                     */ 
/* Version : 1.0.                                                             */ 
/* Status  : Public domain.                                                   */ 
/*                                                                            */ 
/* Description : This program writes a CRC lookup table (suitable for         */ 
/* inclusion in a C program) to a designated output file. The program can be  */ 
/* statically configured to produce any table covered by the Rocksoft^tm      */ 
/* Model CRC Algorithm. For more information on the Rocksoft^tm Model CRC     */ 
/* Algorithm, see the document titled "A Painless Guide to CRC Error          */ 
/* Detection Algorithms" by Ross Williams (ross@guest.adelaide.edu.au.). This */ 
/* document is likely to be in "ftp.adelaide.edu.au/pub/rocksoft".            */ 
/*                                                                            */ 
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia.    */ 
/*                                                                            */ 
/******************************************************************************/ 
 
#include <stdio.h> 

Page 30 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



#include <stdlib.h> 
#include "crcmodel.h" 
 
/******************************************************************************/ 
 
/* TABLE PARAMETERS                                                           */ 
/* ================                                                           */ 
/* The following parameters entirely determine the table to be generated. You */ 
/* should need to modify only the definitions in this section before running  */ 
/* this program.                                                              */ 
/*                                                                            */ 
/*    TB_FILE  is the name of the output file.                                */ 
/*    TB_WIDTH is the table width in bytes (either 2 or 4).                   */ 
/*    TB_POLY  is the "polynomial", which must be TB_WIDTH bytes wide.        */ 
/*    TB_REVER indicates whether the table is to be reversed (reflected).     */ 
/*                                                                            */ 
/* Example:                                                                   */ 
/*                                                                            */ 
/*    #define TB_FILE   "crctable.out"                                        */ 
/*    #define TB_WIDTH  2                                                     */ 
/*    #define TB_POLY   0x8005L                                               */ 
/*    #define TB_REVER  TRUE                                                  */ 
 
#define TB_FILE   "crctable.out" 
#define TB_WIDTH  4 
#define TB_POLY   0x04C11DB7L 
#define TB_REVER  TRUE 
 
/******************************************************************************/ 
 
/* Miscellaneous definitions. */ 
 
#define LOCAL static 
FILE *outfile; 
#define WR(X) fprintf(outfile,(X)) 
#define WP(X,Y) fprintf(outfile,(X),(Y)) 
 
/******************************************************************************/ 
 
LOCAL void chk_err P_((char *)); 
LOCAL void chk_err (mess) 
/* If mess is non-empty, write it out and abort. Otherwise, check the error   */ 
/* status of outfile and abort if an error has occurred.                      */ 
char *mess; 
{ 
 if (mess[0] != 0   ) {printf("%s\n",mess); exit(EXIT_FAILURE);} 
 if (ferror(outfile)) {perror("chk_err");   exit(EXIT_FAILURE);} 
} 
 
/******************************************************************************/ 
 
LOCAL void chkparam P_((void)); 
LOCAL void chkparam () 
{ 
 if ((TB_WIDTH != 2) && (TB_WIDTH != 4)) 
    chk_err("chkparam: Width parameter is illegal."); 
 if ((TB_WIDTH == 2) && (TB_POLY & 0xFFFF0000L)) 
    chk_err("chkparam: Poly parameter is too wide."); 
 if ((TB_REVER != FALSE) && (TB_REVER != TRUE)) 
    chk_err("chkparam: Reverse parameter is not boolean."); 

Page 31 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



} 
 
/******************************************************************************/ 
 
LOCAL void gentable P_((void)); 
LOCAL void gentable () 
{ 
 WR("/*****************************************************************/\n"); 
 WR("/*                                                               */\n"); 
 WR("/* CRC LOOKUP TABLE                                              */\n"); 
 WR("/* ================                                              */\n"); 
 WR("/* The following CRC lookup table was generated automagically    */\n"); 
 WR("/* by the Rocksoft^tm Model CRC Algorithm Table Generation       */\n"); 
 WR("/* Program V1.0 using the following model parameters:            */\n"); 
 WR("/*                                                               */\n"); 
 WP("/*    Width   : %1lu bytes.                                         */\n", 
    (ulong) TB_WIDTH); 
 if (TB_WIDTH == 2) 
 WP("/*    Poly    : 0x%04lX                                           */\n", 
    (ulong) TB_POLY); 
 else 
 WP("/*    Poly    : 0x%08lXL                                      */\n", 
    (ulong) TB_POLY); 
 if (TB_REVER) 
 WR("/*    Reverse : TRUE.                                            */\n"); 
 else 
 WR("/*    Reverse : FALSE.                                           */\n"); 
 WR("/*                                                               */\n"); 
 WR("/* For more information on the Rocksoft^tm Model CRC Algorithm,  */\n"); 
 WR("/* see the document titled \"A Painless Guide to CRC Error        */\n"); 
 WR("/* Detection Algorithms\" by Ross Williams                        */\n"); 
 WR("/* (ross@guest.adelaide.edu.au.). This document is likely to be  */\n"); 
 WR("/* in the FTP archive \"ftp.adelaide.edu.au/pub/rocksoft\".        */\n"); 
 WR("/*                                                               */\n"); 
 WR("/*****************************************************************/\n"); 
 WR("\n"); 
 switch (TB_WIDTH) 
   { 
    case 2: WR("unsigned short crctable[256] =\n{\n"); break; 
    case 4: WR("unsigned long  crctable[256] =\n{\n"); break; 
    default: chk_err("gentable: TB_WIDTH is invalid."); 
   } 
 chk_err(""); 
 
 { 
  int i; 
  cm_t cm; 
  char *form    = (TB_WIDTH==2) ? "0x%04lX" : "0x%08lXL"; 
  int   perline = (TB_WIDTH==2) ? 8 : 4; 
 
  cm.cm_width = TB_WIDTH*8; 
  cm.cm_poly  = TB_POLY; 
  cm.cm_refin = TB_REVER; 
 
  for (i=0; i<256; i++) 
    { 
     WR(" "); 
     WP(form,(ulong) cm_tab(&cm,i)); 
     if (i != 255) WR(","); 
     if (((i+1) % perline) == 0) WR("\n"); 

Page 32 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



     chk_err(""); 
    } 
 
 WR("};\n"); 
 WR("\n"); 
 WR("/*****************************************************************/\n"); 
 WR("/*                   End of CRC Lookup Table                     */\n"); 
 WR("/*****************************************************************/\n"); 
 WR(""); 
 chk_err(""); 
} 
} 
 
/******************************************************************************/ 
 
main () 
{ 
 printf("\n"); 
 printf("Rocksoft^tm Model CRC Algorithm Table Generation Program V1.0\n"); 
 printf("-------------------------------------------------------------\n"); 
 printf("Output file is \"%s\".\n",TB_FILE); 
 chkparam(); 
 outfile = fopen(TB_FILE,"w"); chk_err(""); 
 gentable(); 
 if (fclose(outfile) != 0) 
    chk_err("main: Couldn't close output file."); 
 printf("\nSUCCESS: The table has been successfully written.\n"); 
} 
 
/******************************************************************************/ 
/*                             End of crctable.c                              */ 
/******************************************************************************/ 
 
20. Summary 
----------- 
This document has provided a detailed explanation of CRC algorithms 
explaining their theory and stepping through increasingly 
sophisticated implementations ranging from simple bit shifting through 
to byte-at-a-time table-driven implementations. The various 
implementations of different CRC algorithms that make them confusing 
to deal with have been explained. A parameterized model algorithm has 
been described that can be used to precisely define a particular CRC 
algorithm, and a reference implementation provided. Finally, a program 
to generate CRC tables has been provided. 
 
21. Corrections 
--------------- 
If you think that any part of this document is unclear or incorrect, 
or have any other information, or suggestions on how this document 
could be improved, please context the author. In particular, I would 
like to hear from anyone who can provide Rocksoft^tm Model CRC 
Algorithm parameters for standard algorithms out there. 
 
A. Glossary 
----------- 
CHECKSUM - A number that has been calculated as a function of some 
message. The literal interpretation of this word "Check-Sum" indicates 
that the function should involve simply adding up the bytes in the 
message. Perhaps this was what early checksums were. Today, however, 
although more sophisticated formulae are used, the term "checksum" is 

Page 33 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



still used. 
 
CRC - This stands for "Cyclic Redundancy Code". Whereas the term 
"checksum" seems to be used to refer to any non-cryptographic checking 
information unit, the term "CRC" seems to be reserved only for 
algorithms that are based on the "polynomial" division idea. 
 
G - This symbol is used in this document to represent the Poly. 
 
MESSAGE - The input data being checksummed. This is usually structured 
as a sequence of bytes. Whether the top bit or the bottom bit of each 
byte is treated as the most significant or least significant is a 
parameter of CRC algorithms. 
 
POLY - This is my friendly term for the polynomial of a CRC. 
 
POLYNOMIAL - The "polynomial" of a CRC algorithm is simply the divisor 
in the division implementing the CRC algorithm. 
 
REFLECT - A binary number is reflected by swapping all of its bits 
around the central point. For example, 1101 is the reflection of 1011. 
 
ROCKSOFT^TM MODEL CRC ALGORITHM - A parameterized algorithm whose 
purpose is to act as a solid reference for describing CRC algorithms. 
Typically CRC algorithms are specified by quoting a polynomial. 
However, in order to construct a precise implementation, one also 
needs to know initialization values and so on. 
 
WIDTH - The width of a CRC algorithm is the width of its polynomical 
minus one. For example, if the polynomial is 11010, the width would be 
4 bits. The width is usually set to be a multiple of 8 bits. 
 
B. References 
------------- 
[Griffiths87] Griffiths, G., Carlyle Stones, G., "The Tea-Leaf Reader 
Algorithm: An Efficient Implementation of CRC-16 and CRC-32", 
Communications of the ACM, 30(7), pp.617-620. Comment: This paper 
describes a high-speed table-driven implementation of CRC algorithms. 
The technique seems to be a touch messy, and is superceded by the 
Sarwete algorithm. 
 
[Knuth81] Knuth, D.E., "The Art of Computer Programming", Volume 2: 
Seminumerical Algorithms, Section 4.6. 
 
[Nelson 91] Nelson, M., "The Data Compression Book", M&T Books, (501 
Galveston Drive, Redwood City, CA 94063), 1991, ISBN: 1-55851-214-4. 
Comment: If you want to see a real implementation of a real 32-bit 
checksum algorithm, look on pages 440, and 446-448. 
 
[Sarwate88] Sarwate, D.V., "Computation of Cyclic Redundancy Checks 
via Table Look-Up", Communications of the ACM, 31(8), pp.1008-1013. 
Comment: This paper describes a high-speed table-driven implementation 
for CRC algorithms that is superior to the tea-leaf algorithm. 
Although this paper describes the technique used by most modern CRC 
implementations, I found the appendix of this paper (where all the 
good stuff is) difficult to understand. 
 
[Tanenbaum81] Tanenbaum, A.S., "Computer Networks", Prentice Hall, 
1981, ISBN: 0-13-164699-0. Comment: Section 3.5.3 on pages 128 to 132 
provides a very clear description of CRC codes. However, it does not 

Page 34 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm



describe table-driven implementation techniques. 
 
 
C. References I Have Detected But Haven't Yet Sighted 
----------------------------------------------------- 
Boudreau, Steen, "Cyclic Redundancy Checking by Program," AFIPS 
Proceedings, Vol. 39, 1971. 
 
Davies, Barber, "Computer Networks and Their Protocols," J. Wiley & 
Sons, 1979. 
 
Higginson, Kirstein, "On the Computation of Cyclic Redundancy Checks 
by Program," The Computer Journal (British), Vol. 16, No. 1, Feb 1973. 
 
McNamara, J. E., "Technical Aspects of Data Communication," 2nd 
Edition, Digital Press, Bedford, Massachusetts, 1982. 
 
Marton and Frambs, "A Cyclic Redundancy Checking (CRC) Algorithm," 
Honeywell Computer Journal, Vol. 5, No. 3, 1971. 
 
Nelson M., "File verification using CRC", Dr Dobbs Journal, May 1992, 
pp.64-67. 
 
Ramabadran T.V., Gaitonde S.S., "A tutorial on CRC computations", IEEE 
Micro, Aug 1988. 
 
Schwaderer W.D., "CRC Calculation", April 85 PC Tech Journal, 
pp.118-133. 
 
Ward R.K, Tabandeh M., "Error Correction and Detection, A Geometric 
Approach" The Computer Journal, Vol. 27, No. 3, 1984, pp.246-253. 
 
Wecker, S., "A Table-Lookup Algorithm for Software Computation of 
Cyclic Redundancy Check (CRC)," Digital Equipment Corporation 
memorandum, 1974. 
 
--<End of Document>-- 
 
<icdlj@asuacad.bitnet>                  Dave Janecek -Electronic Field Service 
<icdlj@asuvm.inre.asu.edu>              Tech. c/o I.R.M. Tech Shop-0201, ASU, 
                                       Tempe, Arizona  85287-0201 :602-965-9126 
                                                          or home :602-832-7127 

Page 35 of 35CRC Explained

15/03/2005http://w3.mech.uwa.edu.au/~petitj01/FTS/CRC%20Explained.htm


