
 Hamming Codes for NAND Flash Memories: TN2908
Overview
Technical Note
Hamming Codes for NAND Flash Memories
For the latest NAND Flash product data sheets, please visit: www.micron.com/nand/.
Overview
NAND Flash memory products have become the technology of choice to satisfy high 
density non-volatile memory requirements in many embedded applications. NAND 
technology provides staggering amounts of storage at a price point lower than any of 
today's semiconductor alternatives. NAND product development has focused on low 
cost per bit, resulting in a technology that requires the system developer to shoulder sig-
nificant implementation details. In particular, NAND memories can be expected to 
experience minor data corruption at some point during normal operation.

NAND devices use one of two different memory cell technologies. The first cell design is 
the traditional implementation, where each memory cell represents a single bit of data. 
The single-bit-per-cell approach is categorized as single-level cell (SLC). The second 
approach is to program each cell in incremental amounts. With this approach, the data 
value is determined by how “hard” a cell has been programmed. This multi-level cell 
(MLC) approach allows each cell to represent two bits of data. Historically, SLC NAND 
devices have provided superior data integrity when compared with their MLC counter-
parts. The reduced data integrity in MLC products requires a significantly more sophisti-
cated error correction scheme than is used for SLC NAND devices. SLC NAND products 
continue to be the preferred technology in embedded systems where data integrity is a 
primary concern.

This technical note describes the use of simple Hamming codes to detect and correct 
data corruption that occurs during normal SLC NAND device operation. The Hamming 
algorithm is capable of repairing single-bit data failures, and detecting whether two bits 
have become corrupted. The Hamming algorithm is an industry-accepted method for 
error detection and correction in many SLC NAND-based applications.
09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 1 ©2005 Micron Technology, Inc. All rights reserved.

Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by 
Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications. All 

information discussed herein is provided on an “as is” basis, without warranties of any kind. 

http://www.micron.com/products/nand/
http://www.micron.com/nand/


 Hamming Codes for NAND Flash Memories: TN2908
Hamming Code Basics
Hamming Code Basics
The Hamming algorithm is highly intuitive, and can be described without the complex 
mathematics found in more sophisticated error correction methods. Consider the pro-
cess analogous to the game “20 Questions.” The goal is to maximize the “area” covered 
by each of the questions.

The most widely used Hamming algorithm for NAND-based applications evaluates a 
packet of data and calculates two Error Correction Code (ECC) values. Each bit in the 
two ECC values represents the parity of half the bits in the data packet. The trick is how 
the data bits are partitioned for each of the parity calculations. To calculate the ECC val-
ues, the data bits are first partitioned in halves, fourths, eighths and so on, until granu-
larity has reached the individual bit level. (See Figure 1.) 

Figure 1:  Partitioning an 8-Bit Data Packet for Parity Calculations  

After the data packet has been partitioned, the parity of each grouping is calculated to 
generate the two ECC values. (See Figure 2.) Thus, each calculation generates the parity 
of one of the data partitions; the response is whether that partition's parity is even or 
odd. The resulting responses are concatenated to make up the ECC values.

The two ECC values generated by the partitioning process are referred to as the even 
ECC (ECCe) and odd ECC (ECCo) values. Note that the most significant bit (MSB) of the 
resulting ECC values corresponds to the one-half-partition groupings; the next most sig-
nificant bit corresponds to the one-fourth-partition groupings, and the least significant 
bit corresponds to the bit-partition groupings. The most-significant to least-significant 
ordering enables direct identification of a failing bit position when the data packet is 
analyzed at a later time.

Figure 2:  Even and Odd ECC Values Calculation  

Larger data packets require larger ECC values. Actually, each n bit ECC value is adequate 
for a 2n-bit data packet (i.e. 8 bits for a 256-bit data packet). This Hamming algorithm 
requires a pair of ECC values, so a total of 2n bits are required to handle 2n bits of data 
(i.e. two 8-bit ECC values (16 bits total) for a 256-bit data packet).

Bit Position:

Data Packet

7

0

0

0

0

6

1

1

1

1

5

0

0

0

0

4

1

1

1

1

3

0

0

0

0

2

0

0

0

0

1

0

0

0

0

0

1

1

1

1

Even Bits

Even Fourths

Even Half

Odd Half

Odd Fourths

Odd Bits

    Halves   Fourths     Bits

ECCe = 0^0^0^1, 0^1^0^1, 1^1^0^1      =      101

ECCo = 0^1^0^1, 0^1^0^0, 0^0^0^0      =      010
09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 2 ©2005 Micron Technology, Inc. All rights reserved.



 Hamming Codes for NAND Flash Memories: TN2908
Hamming Code Basics
Following the calculation, both the data packet and the ECC values are programmed into 
the NAND device. At a later time, when the data packet is read out of the NAND device, 
the ECC values are recalculated. Data corruption is indicated when the newly calculated 
ECC differs from the ECC values previously programmed into the NAND device.

Figure 3 shows the results of the ECC calculation if a single bit in the original data 
becomes corrupted. The new data value is 01010101 (bit 2 flipped from 0 to 1). It is clear 
that corruption has occurred because the new ECC values are different from those origi-
nally calculated.

Figure 3:  ECC Calculation: Corrupted Original Data Bit 2 (01010001 to 01010101) 

If all four ECC values (2 old and 2 new) are exclusive “or'ed,” it is possible to determine 
whether a single bit or multiple bits have become corrupted. If the result of the calcula-
tion is all 1s (111), a single data bit has become corrupted. (See Figure 4). If the result of 
the calculation is all 0s (000), no data corruption has occurred. If the result of this step is 
anything other than all 0s or all 1s, then two (or more) bits have become corrupted. Two-
bit corruption will always be detected, however, the Hamming algorithm only facilitates 
single-bit correction. If three or more bits are corrupted, it is not possible to repair the 
data packet; in this situation the Hamming algorithm may fail to indicate that any cor-
ruption has occurred. Two, and certainly three bits of data corruption is highly unlikely, 
given the profile of bit failures in SLC NAND devices.

Figure 4:  Calculation Determining if Corruption Has Occurred  

When it is evident that a single bit has become corrupted, the failing address is identified 
by exclusive “or-ing” the old and new ECCo values. The calculation in Figure 5 identifies 
bit 2 as the problem. The calculation to identify the bad bit uses the ECCo values 
because they specify the failing bit position directly. 

Figure 5:  Calculation for Finding Failing Bit Position (Bit 2) 

When the failing bit is identified, its state is flipped to repair the data packet (Figure 6).

Figure 6:  Repairing New Data to Original State (Bit 2 Flipped) 

    Halves   Fourths     Bits

ECCe = 0^1^0^1, 0^1^0^1, 1^1^1^1      =      000

ECCo = 0^1^0^1, 0^1^0^1, 0^0^0^0      =      000

ECCe(old)^ECCo(old)^ECCe(new)^ECCo(new)   =  101^010^000^000  =  111

ECCo(old)^ECCo(new)  =  010^000  =  010

01010101^00000100  =  01010001
09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 3 ©2005 Micron Technology, Inc. All rights reserved.



 Hamming Codes for NAND Flash Memories: TN2908
Extension to Larger Data Packets
Extension to Larger Data Packets
In the earlier example six bits of ECC are necessary to ensure the integrity of an 8-bit 
data packet. The overhead in this case is 75%—not an overly impressive number. Fortu-
nately, as the size of the data packet grows, the Hamming algorithm becomes increas-
ingly efficient. Each doubling of the data packet requires two additional bits of ECC 
information (i.e. 512 bytes/4,096 bits of data require a pair of 12-bit ECC values—24 bits 
total). The 24 bits of ECC required for a 512-byte data packet will reduce the overhead to 
0.06%, a much more attractive figure.

Figure 7:  ECC Generation on a Byte-Wide Data Packet  

The data packet shown in Figure 7 could be rearranged into a bit-wide data packet, and 
partitioned as shown earlier, but there is a more effective method for data partitioning. 
Because the XOR function is associative (A^B)^C = A^(B^C) the parity calculation can be 
staged in a more convenient manner.

The staging strategy is implemented with an initial bit-wise and byte-wise calculation 
before generating the final ECC values. The byte-wise calculations start with finding the 
parity of all bits in each byte. The bit-wise calculations determine the parity of the indi-
vidual bit positions in every byte (i.e. all of the D0s, all of the D1s…). After the bit-wise 
and byte-wise parities have been calculated, the data partitioning described earlier can 
be performed. The ECC values are then generated from the partitioned bit-wise and 
byte-wise values. Note that the bit-wise results are positioned in the least significant bits 
of the resulting ECC values and the byte-wise results occupy the high-order bits.

Error detection and correction are performed in a manner similar to the method 
described earlier. In this case, the corrupted bit is identified with a byte-wise address as 
well as a bit-wise address. Figure 8 shows the process when bit 2 of address 6 (from 
Figure 7) becomes corrupted (1 flipped to 0).

7

6

5

4

3

2

1

0

7

1

0

0

0

1

1

0

0

1

6

0

0

1

0

1

1

1

0

0

5

0

0

1

0

1

1

0

1

0

4

1

0

1

0

1

0

0

0

1

3

1

0

0

0

1

1

1

0

0

2

0

1

0

0

1

0

0

0

0

1

1

1

0

0

1

1

0

0

0

0

1

1

1

0

1

0

1

0

1

1

1

0

0

0

1

1

1

B
yt

e 
A

d
d

re
ss

Bit Address

B
yte-w

ise Parity

Bit-wise Parity

  Byte-wise     Byte-wise    Byte-wise  Bit-wise        Bit-wise       Bit-wise
    Halves   Fourths     Bits   Halves   Fourths     Bits  ECC Result

ECCe = 0^1^1^1, 0^0^1^1, 1^0^1^1, 0^0^0^1, 0^1^0^1, 0^1^0^1  =    101100

ECCo = 1^1^0^0, 1^1^0^1, 1^0^0^1, 1^0^0^1, 1^0^0^0, 1^0^0^0  =    010011

8-Byte Data Packet
09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 4 ©2005 Micron Technology, Inc. All rights reserved.



 Hamming Codes for NAND Flash Memories: TN2908
Extension to Larger Data Packets
Figure 8:  Byte-Wide Data Correction Process  

The extension from an 8-byte data packet to a 512-byte packet only requires modifying 
the size of the data partitions; the algorithm remains the same. Each of the two resulting 
ECC values will be 12 bits long. The three least significant ECC bits represent the eight 
bits in each data value, and the nine most significant ECC bits represent the 512 different 
addresses.

Accommodating a x16 interface is equally straightforward. Each 16-bit word is parti-
tioned into even and odd groupings of 8, 4, 2, and 1 bit(s) that are used to generate the 
four least significant bits in the generated ECC value. Thus, each ECC value for a 256- 
word data packet will have four bit-wise bits and eight byte-wise bits (12 bits total, the 
same as a 512-byte packet).

7

6

5

4

3

2

1

0

7

1

0

0

0

1

1

0

0

1

6

0

0

1

0

1

1

1

0

0

5

0

0

1

0

1

1

0

1

0

4

1

0

1

0

1

0

0

0

1

3

1

0

0

0

1

1

1

0

0

2

0

0

0

0

1

0

0

0

1

1

1

1

0

0

1

1

0

0

0

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

1

1

B
yt

e 
A

d
d

re
ss

Bit Address

B
yte-w

ise Parity

Bit-wise Parity

  Byte-wise     Byte-wise    Byte-wise  Bit-wise        Bit-wise       Bit-wise
    Halves   Fourths     Bits   Halves   Fourths     Bits  ECC Result

ECCe = 0^1^1^1, 0^0^1^1, 0^0^1^1, 0^1^0^1, 0^1^0^1, 0^1^1^1 =    100001

ECCo = 1^0^0^0, 1^0^0^1, 1^0^0^1, 1^0^0^1, 1^0^0^1, 1^0^0^0 =    100001

1. Find partial parities.

8-Byte Data Packet

2. Calculate new ECC values.

ECCe(old)^ECCo(old)^ECCe(new)^ECCo(new)  =  101100^010011^100001^100001 =    111111

Any result that is not 0s indicates an error. When result is all 1s, a correctable single-bit error is indicated.

3. Is there an error?

ECCo(old)^ECCo(new)    =    010011^100001    =   110010

Parse result info byte address (110) and bit address (010). Bad bit is located at address 6, bit 2.

4. Find corrupted bit location.

Flip bit 2 in address 6 to repair data packet.

5. Repair corrupted bit.
09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 5 ©2005 Micron Technology, Inc. All rights reserved.



 Hamming Codes for NAND Flash Memories: TN2908
Conclusion
Conclusion
The use of Hamming codes is relatively straightforward and can easily be implemented 
in either software or hardware. The drawback to using this efficient algorithm is its lim-
ited error correction capabilities. Hamming codes enable single-bit error correction and 
double-bit error detection. The double-bit error detection capability is useful because it 
allows for a fall back strategy to deal with data that is not repairable. Strategies to deal 
with non-repairable data include repeated reading of the data packet or the use of a sec-
ondary ECC algorithm. The random nature of bit failures in NAND devices and the sim-
plicity of the algorithm has made Hamming coding the error correction strategy of 
choice for SLC NAND-based applications. 
®

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992

Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.   
All other trademarks are the property of their respective owners.

09005aef819bc571 pdf/ 09005aef819bc51c source Micron Technology, Inc., reserves the right to change products or specifications without notice.
tn2908_hamming_code_nand_memories.fm - Rev. A 4/05 EN 6 ©2005 Micron Technology, Inc. All rights reserved.

mailto:prodmktg@micron.com
http://www.micron.com/

	Overview
	Hamming Code Basics
	Extension to Larger Data Packets
	Conclusion

