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Conventions

Conventions

The following typographic conventions are used:

• Italic face is used for newly introduced terms and file names.

• Typewriter face is used for code examples and command line output.

• Bold typewriter face is used for user input in command lines.

Data values and addresses are usually specified as hexadecimal values. These are
marked in the C programming language style with the prefix 0x (example: 0x88A4).
Unless otherwise noted, address values are specified as byte addresses.

Function names are always printed with parentheses, but without parameters. So, if
a function ecrt_request_master() has empty parentheses, this shall not imply that
it has no parameters.

If shell commands have to be entered, this is marked by a dollar prompt:

$

Further, if a shell command has to be entered as the superuser, the prompt is a mesh:

#

x 6129a5f715fb, 2010/04/30



1 The IgH EtherCAT Master

This chapter covers some general information about the EtherCAT master.

1.1 Feature Summary

The list below gives a short summary of the master features.

• Designed as a kernel module for Linux 2.6.

• Implemented according to IEC 61158-12 [2] [3].

• Comes with EtherCAT-capable native drivers for several common Ethernet
chips, as well as a generic driver for all chips supported by the Linux kernel.

– The native drivers operate the hardware without interrupts.

– Native drivers for additional Ethernet hardware can easily be implemented
using the common device interface (see sec. 4.5) provided by the master
module.

– For any other hardware, the generic driver can be used. It uses the lower
layers of the Linux network stack.

• The master module supports multiple EtherCAT masters running in parallel.

• The master code supports any Linux realtime extension through its independent
architecture.

– RTAI [10], ADEOS, RT-Preempt [11], etc.

– It runs well even without realtime extensions.

• Common “Application Interface” for applications, that want to use EtherCAT
functionality (see chap. 3).

• Domains are introduced, to allow grouping of process data transfers with dif-
ferent slave groups and task periods.

– Handling of multiple domains with different task periods.

– Automatic calculation of process data mapping, FMMU and sync manager
configuration within each domain.

• Communication through several finite state machines.

– Automatic bus scanning after topology changes.

6129a5f715fb, 2010/04/30 1



1 The IgH EtherCAT Master

– Bus monitoring during operation.

– Automatic reconfiguration of slaves (for example after power failure) during
operation.

• Distributed Clocks support (see sec. 3.5).

– Configuration of the slave’s DC parameters through the application inter-
face.

– Synchronization (offset and drift compensation) of the distributed slave
clocks to the reference clock.

– Optional synchronization of the reference clock to the master clock.

• CANopen over EtherCAT (CoE)

– SDO upload, download and information service.

– Slave configuration via SDOs.

– SDO access from userspace and from the application.

• Ethernet over EtherCAT (EoE)

– Transparent use of EoE slaves via virtual network interfaces.

– Natively supports either a switched or a routed EoE network architecture.

• Vendor-specific over EtherCAT (VoE)

– Communication with vendor-specific mailbox protocols via the API.

• File Access over EtherCAT (FoE)

– Loading and storing files via the command-line tool.

– Updating a slave’s firmware can be done easily.

• Servo Profile over EtherCAT (SoE)

– Implemented according to IEC 61800-7 [15].

– Storing IDN configurations, that are written to the slave during startup.

– Accessing IDNs via the command-line tool.

– Accessing IDNs at runtime via the the user-space library.

• Userspace command-line-tool “ethercat” (see sec. 7.1)

– Detailed information about master, slaves, domains and bus configuration.

– Setting the master’s debug level.

– Reading/Writing alias addresses.

– Listing slave configurations.

– Viewing process data.

– SDO download/upload; listing SDO dictionaries.

2 6129a5f715fb, 2010/04/30



1.2 License

– Loading and storing files via FoE.

– SoE IDN access.

– Access to slave registers.

– Slave SII (EEPROM) access.

– Controlling application-layer states.

– Generation of slave description XML and C-code from existing slaves.

• Seamless system integration though LSB compliance.

– Master and network device configuration via sysconfig files.

– Init script for master control.

• Virtual read-only network interface for monitoring and debugging purposes.

1.2 License

The master code is released under the terms and conditions of the GNU General Public
License (GPL [4]), version 2. Other developers, that want to use EtherCAT with Linux
systems, are invited to use the master code or even participate on development.

To allow static linking of userspace application against the master’s application inter-
face (see chap. 3), the userspace library (see sec. 7.2) is licensed under the terms and
conditions of the GNU Lesser General Public License (LGPL [5]), version 2.1.

6129a5f715fb, 2010/04/30 3
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2 Architecture

The EtherCAT master is integrated into the Linux 2.6 kernel. This was an early
design decision, which has been made for several reasons:

• Kernel code has significantly better realtime characteristics, i. e. less latency
than userspace code. It was foreseeable, that a fieldbus master has a lot of
cyclic work to do. Cyclic work is usually triggered by timer interrupts inside
the kernel. The execution delay of a function that processes timer interrupts is
less, when it resides in kernelspace, because there is no need of time-consuming
context switches to a userspace process.

• It was also foreseeable, that the master code has to directly communicate with
the Ethernet hardware. This has to be done in the kernel anyway (through
network device drivers), which is one more reason for the master code being in
kernelspace.

Figure 2.1 gives a general overview of the master architecture.

The components of the master environment are described below:

Master Module Kernel module containing one or more EtherCAT master instances
(see sec. 2.1), the “Device Interface” (see sec. 4.5) and the “Application Inter-
face” (see chap. 3).

Device Modules EtherCAT-capable Ethernet device driver modules, that offer their
devices to the EtherCAT master via the device interface (see sec. 4.5). These
modified network drivers can handle network devices used for EtherCAT oper-
ation and “normal” Ethernet devices in parallel. A master can accept a certain
device and then is able to send and receive EtherCAT frames. Ethernet devices
declined by the master module are connected to the kernel’s network stack as
usual.

Application A program that uses the EtherCAT master (usually for cyclic exchange
of process data with EtherCAT slaves). These programs are not part of the
EtherCAT master code1, but have to be generated or written by the user.
An application can “request” a master through the application interface (see
chap. 3). If this succeeds, it has the control over the master: It can provide a
bus configuration and exchange process data. Applications can be kernel mod-
ules (that use the kernel application interface directly) or userspace programs,
that use the application interface via the EtherCAT library (see sec. 7.2).

1Although there are some examples provided in the examples/ directory.
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2 Architecture
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2.1 Master Module

2.1 Master Module

The EtherCAT master kernel module ec master can contain multiple master instances.
Each master waits for a certain Ethernet device identified by its MAC address. These
addresses have to be specified on module loading via the main devices module param-
eter. The number of master instances to initialize is taken from the number of MAC
addresses given.

The below command loads the master module with a single master instance that waits
for the Ethernet device with the MAC address 00:0E:0C:DA:A2:20. The master will
be accessible via index 0.

# modprobe ec master main devices=00:0E:0C:DA:A2:20

MAC addresses for multiple masters have to be separated by commas:

# modprobe ec master main devices=00:0E:0C:DA:A2:20,00:e0:81:71:d5:1c

The two masters can be addressed by their indices 0 and 1 respectively (see figure 2.2).
The master index is needed for the ecrt_master_request() function of the application
interface (see chap. 3) and the --master option of the ethercat command-line tool (see
sec. 7.1), which defaults to 0.

master 0 master 1

EtherCAT master module

Kernel space

Figure 2.2: Multiple masters in one module

Debug Level The master module also has a parameter debug level to set the initial
debug level for all masters (see also 7.1.6).

Init Script In most cases it is not necessary to load the master module and the
Ethernet driver modules manually. There is an init script available, so the master can
be started as a service (see sec. 7.3).

Syslog The master module outputs information about its state and events to the
kernel ring buffer. These also end up in the system logs. The above module loading
command should result in the messages below:

6129a5f715fb, 2010/04/30 7



2 Architecture

# dmesg | tail -2

EtherCAT: Master driver 1.5.0

EtherCAT: 2 masters waiting for devices.

# tail -2 /var/log/messages

Jul 4 10:22:45 ethercat kernel: EtherCAT: Master driver 1.5.0

Jul 4 10:22:45 ethercat kernel: EtherCAT: 2 masters waiting

for devices.

All EtherCAT master output is prefixed with EtherCAT which makes searching the
logs easier.

2.2 Master Phases

Every EtherCAT master provided by the master module (see sec. 2.1) runs through
several phases (see fig. 2.3):

Orphaned Idle Operation

Device connection Master request

Device disconnection Master release

Figure 2.3: Master phases and transitions

Orphaned phase This mode takes effect, when the master still waits for its Ethernet
device to connect. No bus communication is possible until then.

Idle phase takes effect when the master has accepted an Ethernet device, but is
not requested by any application yet. The master runs its state machine (see
sec. 5.3), that automatically scans the bus for slaves and executes pending opera-
tions from the userspace interface (for example SDO access). The command-line
tool can be used to access the bus, but there is no process data exchange because
of the missing bus configuration.

Operation phase The master is requested by an application that can provide a bus
configuration and exchange process data.

2.3 Process Data

This section shall introduce a few terms and ideas how the master handles process
data.

8 6129a5f715fb, 2010/04/30



2.3 Process Data

Process Data Image Slaves offer their inputs and outputs by presenting the mas-
ter so-called “Process Data Objects” (PDOs). The available PDOs can be either
determined by reading out the slave’s TXPDO and RXPDO SII categories from the
E2PROM (in case of fixed PDOs) or by reading out the appropriate CoE objects (see
sec. 6.2), if available. The application can register the PDOs’ entries for exchange
during cyclic operation. The sum of all registered PDO entries defines the “process
data image”, which is exchanged via datagrams with “logical” memory access (like
LWR, LRD or LRW) introduced in [2, sec. 5.4].

Process Data Domains The process data image can be easily managed by creat-
ing so-called “domains”, which allow grouped PDO exchange. They also take care
of managing the datagram structures needed to exchange the PDOs. Domains are
mandatory for process data exchange, so there has to be at least one. They were
introduced for the following reasons:

• The maximum size of a datagram is limited due to the limited size of an Eth-
ernet frame: The maximum data size is the Ethernet data field size minus the
EtherCAT frame header, EtherCAT datagram header and EtherCAT datagram
footer: 1500 − 2 − 12 − 2 = 1484 octets. If the size of the process data image
exceeds this limit, multiple frames have to be sent, and the image has to be
partitioned for the use of multiple datagrams. A domain manages this auto-
matically.

• Not every PDO has to be exchanged with the same frequency: The values of
PDOs can vary slowly over time (for example temperature values), so exchanging
them with a high frequency would just waste bus bandwidth. For this reason,
multiple domains can be created, to group different PDOs and so allow separate
exchange.

There is no upper limit for the number of domains, but each domain occupies one
FMMU in each slave involved, so the maximum number of domains is de facto limited
by the slaves.

FMMU Configuration An application can register PDO entries for exchange. Every
PDO entry and its parent PDO is part of a memory area in the slave’s physical
memory, that is protected by a sync manager [2, sec. 6.7] for synchronized access.
In order to make a sync manager react on a datagram accessing its memory, it is
necessary to access the last byte covered by the sync manager. Otherwise the sync
manager will not react on the datagram and no data will be exchanged. That is
why the whole synchronized memory area has to be included into the process data
image: For example, if a certain PDO entry of a slave is registered for exchange with
a certain domain, one FMMU will be configured to map the complete sync-manager-
protected memory, the PDO entry resides in. If a second PDO entry of the same slave
is registered for process data exchange within the same domain, and it resides in the
same sync-manager-protected memory as the first one, the FMMU configuration is

6129a5f715fb, 2010/04/30 9



2 Architecture

not altered, because the desired memory is already part of the domain’s process data
image. If the second PDO entry would belong to another sync-manager-protected
area, this complete area would also be included into the domains process data image.

Figure 2.4 gives an overview, how FMMUs are configured to map physical memory
to logical process data images.

Registered PDO Entries

RAM SM1 RAM

Slave0 Slave1

FMMU0FMMU0 FMMU1 FMMU2

SM0 SM3

Domain0 Image Domain1 Image

Figure 2.4: FMMU Configuration
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3 Application Interface

The application interface provides functions and data structures for applications to
access an EtherCAT master. The complete documentation of the interface is included
as Doxygen [12] comments in the header file include/ecrt.h. It can either be read
directly from the file comments, or as a more comfortable HTML documentation.
The HTML generation is described in sec. 9.3.

The following sections cover a general description of the application interface.

Every application should use the master in two steps:

Configuration The master is requested and the configuration is applied. For example,
domains are created, slaves are configured and PDO entries are registered (see
sec. 3.1).

Operation Cyclic code is run and process data are exchanged (see sec. 3.2).

Example Applications There are a few example applications in the examples/ sub-
directory of the master code. They are documented in the source code.

3.1 Master Configuration

The bus configuration is supplied via the application interface. Figure 3.1 gives an
overview of the objects, that can be configured by the application.

3.1.1 Slave Configuration

The application has to tell the master about the expected bus topology. This can
be done by creating “slave configurations”. A slave configuration can be seen as an
expected slave. When a slave configuration is created, the application provides the
bus position (see below), vendor id and product code.

When the bus configuration is applied, the master checks, if there is a slave with
the given vendor id and product code at the given position. If this is the case,
the slave configuration is “attached” to the real slave on the bus and the slave is
configured according to the settings provided by the application. The state of a slave
configuration can either be queried via the application interface or via the command-
line tool (see sec. 7.1.3).
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3 Application Interface
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Figure 3.1: Master Configuration

Slave Position The slave position has to be specified as a tuple of “alias” and
“position”. This allows addressing slaves either via an absolute bus position, or a
stored identifier called “alias”, or a mixture of both. The alias is a 16-bit value stored
in the slave’s E2PROM. It can be modified via the command-line tool (see sec. 7.1.2).
Table 3.1 shows, how the values are interpreted.

Table 3.1: Specifying a Slave Position

Alias Position Interpretation
0 0 – 65535 Position addressing. The position pa-

rameter is interpreted as the absolute
ring position in the bus.

1 – 65535 0 – 65535 Alias addressing. The position param-
eter is interpreted as relative position
after the first slave with the given alias
address.

Figure 3.2 shows an example of how slave configurations are attached. Some of the
configurations were attached, while others remain detached. The below lists gives the
reasons beginning with the top slave configuration.

1. A zero alias means to use simple position addressing. Slave 1 exists and vendor
id and product code match the expected values.

2. Although the slave with position 0 is found, the product code does not match,
so the configuration is not attached.
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Vendor:

Product:
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0x00000001

0x00000001
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0x0000
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Vendor:

Product:

0x0000

0x00000002

0x00000004

1

Alias:
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0x0000

0x00000002

0

0x00000001

Alias:

Position:

Vendor:

Product:

0x2000

0x00000001

0x00000002

0

Alias:

Position:

Vendor:

Product:

0x3000

0x00000001

0x00000002

0

Alias:

Position:

Vendor:

Product:

0x2000

0x00000001

0x00000002

1

3

0

1

2

Slaves Slave Configurations

Figure 3.2: Slave Configuration Attachment

3. The alias is non-zero, so alias addressing is used. Slave 2 is the first slave with
alias 0x2000. Because the position value is zero, the same slave is used.

4. There is no slave with the given alias, so the configuration can not be attached.

5. Slave 2 is again the first slave with the alias 0x2000, but position is now 1, so
slave 3 is attached.

3.2 Cyclic Operation

To enter cyclic operation mode, the master has to be “activated” to calculate the
process data image and apply the bus configuration for the first time. After activation,
the application is in charge to send and receive frames.

3.3 VoE Handlers

During the configuration phase, the application can create handlers for the VoE mail-
box protocol described in sec. 6.3. One VoE handler always belongs to a certain slave
configuration, so the creation function is a method of the slave configuration.

A VoE handler manages the VoE data and the datagram used to transmit and receive
VoE messages. Is contains the state machine necessary to transfer VoE messages.
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The VoE state machine can only process one operation at a time. As a result, either
a read or write operation may be issued at a time1. After the operation is initiated,
the handler must be executed cyclically until it is finished. After that, the results of
the operation can be retrieved.

A VoE handler has an own datagram structure, that is marked for exchange after each
execution step. So the application can decide, how many handlers to execute before
sending the corresponding EtherCAT frame(s).

For more information about the use of VoE handlers see the documentation of the
application interface functions and the example applications provided in the examples/
directory.

3.4 Concurrent Master Access

In some cases, one master is used by several instances, for example when an application
does cyclic process data exchange, and there are EoE-capable slaves that require to
exchange Ethernet data with the kernel (see sec. 6.1). For this reason, the master is
a shared resource, and access to it has to be sequentialized. This is usually done by
locking with semaphores, or other methods to protect critical sections.

The master itself can not provide locking mechanisms, because it has no chance to
know the appropriate kind of lock. For example if the application is in kernelspace
and uses RTAI functionality, ordinary kernel semaphores would not be sufficient. For
that, an important design decision was made: The application that reserved a master
must have the total control, therefore it has to take responsibility for providing the
appropriate locking mechanisms. If another instance wants to access the master, it has
to request the bus access via callbacks, that have to be provided by the application.
Moreover the application can deny access to the master if it considers it to be awkward
at the moment.

Task

EoE

Master Module

Master0

Application Module

A
p
p
lic

a
tio

n

In
te

rfa
c
e

Figure 3.3: Concurrent Master Access

1If simultaneous sending and receiving is desired, two VoE handlers can be created for the slave
configuration.
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Figure 3.3 exemplary shows, how two processes share one master: The application’s
cyclic task uses the master for process data exchange, while the master-internal EoE
process uses it to communicate with EoE-capable slaves. Both have to access the bus
from time to time, but the EoE process does this by “asking” the application to do
the bus access for it. In this way, the application can use the appropriate locking
mechanism to avoid accessing the bus at the same time. See the application interface
documentation (chap. 3) for how to use these callbacks.

3.5 Distributed Clocks

From version 1.5, the master supports EtherCAT’s “Distributed Clocks” feature. It
is possible to synchronize the slave clocks on the bus to the “reference clock” (which
is the local clock of the first slave with DC support) and to synchronize the reference
clock to the “master clock” (which is the local clock of the master). All other clocks
on the bus (after the reference clock) are considered as “slave clocks” (see fig. 3.4).

Reference Clock

Master Clock

Slave Clocks

Slave 2 Slave n

Master

Slave 1Slave 0

(No DC)

Figure 3.4: Distributed Clocks

Local Clocks Any EtherCAT slave that supports DC has a local clock register with
nanosecond resolution. If the slave is powered, the clock starts from zero, meaning
that when slaves are powered on at different times, their clocks will have different
values. These “offsets” have to be compensated by the distributed clocks mechanism.
On the other hand, the clocks do not run exactly with the same speed, since the
used quarts units have a natural frequency deviation. This deviation is usually very
small, but over longer periods, the error would accumulate and the difference between
local clocks would grow. This clock “drift” has also to be compensated by the DC
mechanism.

Application Time The common time base for the bus has to be provided by the
application. This application time tapp is used

1. to configure the slaves’ clock offsets (see below),

2. to program the slave’s start times for sync pulse generation (see below).

3. to synchronize the reference clock to the master clock (optional).
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Offset Compensation For the offset compensation, each slave provides a “System
Time Offset” register toff, that is added to the internal clock value tint to get the
“System Time” tsys:

tsys = tint + toff (3.1)

⇒ tint = tsys − toff

The master reads the values of both registers to calculate a new system time offset in
a way, that the resulting system time shall match the master’s application time tapp:

tsys
!

= tapp (3.2)

⇒ tint + toff
!

= tapp

⇒ toff = tapp − tint

⇒ toff = tapp − (tsys − toff)

⇒ toff = tapp − tsys + toff (3.3)

The small time offset error resulting from the different times of reading and writing
the registers will be compensated by the drift compensation.

Drift Compensation The drift compensation is possible due to a special mechanism
in each DC-capable slave: A write operation to the “System time” register will cause
the internal time control loop to compare the written time (minus the programmed
transmission delay, see below) to the current system time. The calculated time error
will be used as an input to the time controller, that will tune the local clock speed to
be a little faster or slower2, according to the sign of the error.

Transmission Delays The Ethernet frame needs a small amount of time to get from
slave to slave. The resulting transmission delay times accumulate on the bus and
can reach microsecond magnitude and thus have to be considered during the drift
compensation. EtherCAT slaves supporting DC provide a mechanism to measure the
transmission delays: For each of the four slave ports there is a receive time register.
A write operation to the receive time register of port 0 starts the measuring and the
current system time is latched and stored in a receive time register once the frame
is received on the corresponding port. The master can read out the relative receive
times, then calculate time delays between the slaves (using its knowledge of the bus
topology), and finally calculate the time delays from the reference clock to each slave.
These values are programmed into the slaves’ transmission delay registers. In this
way, the drift compensation can reach nanosecond synchrony.

2The local slave clock will be incremented either with 9 ns, 10 ns or 11 ns every 10 ns.
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Checking Synchrony DC-capable slaves provide the 32-bit “System time difference”
register at address 0x092c, where the system time difference of the last drift compensa-
tion is stored in nanosecond resolution and in sign-and-magnitude coding3. To check
for bus synchrony, the system time difference registers can also be cyclically read via
the command-line-tool (see sec. 7.1.14):

$ watch -n0 "ethercat reg read -p4 -tsm32 0x92c"

Sync Signals Synchronous clocks are only the prerequisite for synchronous events
on the bus. Each slave with DC support provides two “sync signals”, that can be
programmed to create events, that will for example cause the slave application to
latch its inputs on a certain time. A sync event can either be generated once or
cyclically, depending on what makes sense for the slave application. Programming
the sync signals is a matter of setting the so-called “AssignActivate” word and the
sync signals’ cycle- and shift times. The AssignActivate word is slave-specific and has
to be taken from the XML slave description (Device → Dc), where also typical sync
signal configurations “OpModes” can be found.

3This allows broadcast-reading all system time difference registers on the bus to get an upper
approximation
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The EtherCAT protocol is based on the Ethernet standard, so a master relies on
standard Ethernet hardware to communicate with the bus.

The term device is used as a synonym for Ethernet network interface hardware.

Native Ethernet Device Drivers There are native device driver modules (see sec. 4.2)
that handle Ethernet hardware, which a master can use to connect to an EtherCAT
bus. They offer their Ethernet hardware to the master module via the device interface
(see sec. 4.5) and must be capable to prepare Ethernet devices either for EtherCAT
(realtime) operation or for “normal” operation using the kernel’s network stack. The
advantage of this approach is that the master can operate nearly directly on the hard-
ware, which allows a high performance. The disadvantage is, that there has to be an
EtherCAT-capable version of the original Ethernet driver.

Generic Ethernet Device Driver From master version 1.5, there is a generic Ether-
net device driver module (see sec. 4.3), that uses the lower layers of the network stack
to connect to the hardware. The advantage is, that arbitrary Ethernet hardware can
be used for EtherCAT operation, independently of the actual hardware driver (so all
Linux Ethernet drivers are supported without modifications). The disadvantage is,
that this approach does not support realtime extensions like RTAI, because the Linux
network stack is addressed. Moreover the performance is a little worse than the native
approach, because the Ethernet frame data have to traverse the network stack.

4.1 Network Driver Basics

EtherCAT relies on Ethernet hardware and the master needs a physical Ethernet
device to communicate with the bus. Therefore it is necessary to understand how
Linux handles network devices and their drivers, respectively.

Tasks of a Network Driver Network device drivers usually handle the lower two
layers of the OSI model, that is the physical layer and the data-link layer. A network
device itself natively handles the physical layer issues: It represents the hardware to
connect to the medium and to send and receive data in the way, the physical layer
protocol describes. The network device driver is responsible for getting data from the
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kernel’s networking stack and forwarding it to the hardware, that does the physical
transmission. If data is received by the hardware respectively, the driver is notified
(usually by means of an interrupt) and has to read the data from the hardware memory
and forward it to the network stack. There are a few more tasks, a network device
driver has to handle, including queue control, statistics and device dependent features.

Driver Startup Usually, a driver searches for compatible devices on module loading.
For PCI drivers, this is done by scanning the PCI bus and checking for known device
IDs. If a device is found, data structures are allocated and the device is taken into
operation.

Interrupt Operation A network device usually provides a hardware interrupt that
is used to notify the driver of received frames and success of transmission, or errors,
respectively. The driver has to register an interrupt service routine (ISR), that is
executed each time, the hardware signals such an event. If the interrupt was thrown
by the own device (multiple devices can share one hardware interrupt), the reason
for the interrupt has to be determined by reading the device’s interrupt register. For
example, if the flag for received frames is set, frame data has to be copied from
hardware to kernel memory and passed to the network stack.

The net_device Structure The driver registers a net_device structure for each
device to communicate with the network stack and to create a “network interface”.
In case of an Ethernet driver, this interface appears as ethX, where X is a number
assigned by the kernel on registration. The net_device structure receives events
(either from userspace or from the network stack) via several callbacks, which have
to be set before registration. Not every callback is mandatory, but for reasonable
operation the ones below are needed in any case:

open() This function is called when network communication has to be started, for ex-
ample after a command ip link set ethX up from userspace. Frame reception
has to be enabled by the driver.

stop() The purpose of this callback is to “close” the device, i. e. make the hardware
stop receiving frames.

hard_start_xmit() This function is called for each frame that has to be transmitted.
The network stack passes the frame as a pointer to an sk_buff structure (“socket
buffer”, see below), which has to be freed after sending.

get_stats() This call has to return a pointer to the device’s net_device_stats struc-
ture, which permanently has to be filled with frame statistics. This means,
that every time a frame is received, sent, or an error happened, the appropriate
counter in this structure has to be increased.

The actual registration is done with the register_netdev() call, unregistering is done
with unregister_netdev().
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The netif Interface All other communication in the direction interface→ network
stack is done via the netif_*() calls. For example, on successful device opening,
the network stack has to be notified, that it can now pass frames to the interface.
This is done by calling netif_start_queue(). After this call, the hard_start_xmit()

callback can be called by the network stack. Furthermore a network driver usually
manages a frame transmission queue. If this gets filled up, the network stack has
to be told to stop passing further frames for a while. This happens with a call
to netif_stop_queue(). If some frames have been sent, and there is enough space
again to queue new frames, this can be notified with netif_wake_queue(). Another
important call is netif_receive_skb()1: It passes a frame to the network stack, that
was just received by the device. Frame data has to be included in a so-called “socket
buffer” for that (see below).

Socket Buffers Socket buffers are the basic data type for the whole network stack.
They serve as containers for network data and are able to quickly add data headers
and footers, or strip them off again. Therefore a socket buffer consists of an allocated
buffer and several pointers that mark beginning of the buffer (head), beginning of data
(data), end of data (tail) and end of buffer (end). In addition, a socket buffer holds
network header information and (in case of received data) a pointer to the net_device,
it was received on. There exist functions that create a socket buffer (dev_alloc_skb()),
add data either from front (skb_push()) or back (skb_put()), remove data from front
(skb_pull()) or back (skb_trim()), or delete the buffer (kfree_skb()). A socket buffer
is passed from layer to layer, and is freed by the layer that uses it the last time. In
case of sending, freeing has to be done by the network driver.

4.2 Native EtherCAT Device Drivers

There are a few requirements, that applies to Ethernet hardware when used with a
native Ethernet driver with EtherCAT functionality.

Dedicated Hardware For performance and realtime purposes, the EtherCAT master
needs direct and exclusive access to the Ethernet hardware. This implies that the
network device must not be connected to the kernel’s network stack as usual, because
the kernel would try to use it as an ordinary Ethernet device.

Interrupt-less Operation EtherCAT frames travel through the logical EtherCAT
ring and are then sent back to the master. Communication is highly deterministic: A
frame is sent and will be received again after a constant time, so there is no need to

1This function is part of the NAPI (“New API”), that replaces the kernel 2.4 technique for in-
terfacing to the network stack (with netif_rx()). NAPI is a technique to improve network
performance on Linux. Read more in http://www.cyberus.ca/~hadi/usenix-paper.tgz.
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notify the driver about frame reception: The master can instead query the hardware
for received frames, if it expects them to be already received.

Figure 4.1 shows two workflows for cyclic frame transmission and reception with and
without interrupts.
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Figure 4.1: Interrupt Operation versus Interrupt-less Operation

In the left workflow “Interrupt Operation”, the data from the last cycle is first pro-
cessed and a new frame is assembled with new datagrams, which is then sent. The
cyclic work is done for now. Later, when the frame is received again by the hardware,
an interrupt is triggered and the ISR is executed. The ISR will fetch the frame data
from the hardware and initiate the frame dissection: The datagrams will be processed,
so that the data is ready for processing in the next cycle.

In the right workflow “Interrupt-less Operation”, there is no hardware interrupt en-
abled. Instead, the hardware will be polled by the master by executing the ISR. If the
frame has been received in the meantime, it will be dissected. The situation is now
the same as at the beginning of the left workflow: The received data is processed and
a new frame is assembled and sent. There is nothing to do for the rest of the cycle.

The interrupt-less operation is desirable, because hardware interrupts are not con-
ducive in improving the driver’s realtime behaviour: Their indeterministic incidences
contribute to increasing the jitter. Besides, if a realtime extension (like RTAI) is used,
some additional effort would have to be made to prioritize interrupts.

Ethernet and EtherCAT Devices Another issue lies in the way Linux handles de-
vices of the same type. For example, a PCI driver scans the PCI bus for devices it can
handle. Then it registers itself as the responsible driver for all of the devices found.
The problem is, that an unmodified driver can not be told to ignore a device because
it will be used for EtherCAT later. There must be a way to handle multiple devices
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of the same type, where one is reserved for EtherCAT, while the other is treated as
an ordinary Ethernet device.

For all this reasons, the author decided that the only acceptable solution is to modify
standard Ethernet drivers in a way that they keep their normal functionality, but gain
the ability to treat one or more of the devices as EtherCAT-capable.

Below are the advantages of this solution:

• No need to tell the standard drivers to ignore certain devices.

• One networking driver for EtherCAT and non-EtherCAT devices.

• No need to implement a network driver from scratch and running into issues,
the former developers already solved.

The chosen approach has the following disadvantages:

• The modified driver gets more complicated, as it must handle EtherCAT and
non-EtherCAT devices.

• Many additional case differentiations in the driver code.

• Changes and bug fixes on the standard drivers have to be ported to the Ether-
CAT-capable versions from time to time.

4.3 Generic EtherCAT Device Driver

Since there are approaches to enable the complete Linux kernel for realtime operation
[11], it is possible to operate without native implementations of EtherCAT-capable
Ethernet device drivers and use the Linux network stack instead. Fig. 2.1 shows the
“Generic Ethernet Driver Module”, that connects to local Ethernet devices via the
network stack. The kernel module is named ec_generic and can be loaded after the
master module like a native EtherCAT-capable Ethernet driver.

The generic device driver scans the network stack for interfaces, that have been reg-
istered by Ethernet device drivers. It offers all possible devices to the EtherCAT
master. If the master accepts a device, the generic driver creates a packet socket (see
man 7 packet) with socket_type set to SOCK_RAW, bound to that device. All functions
of the device interface (see sec. 4.5) will then operate on that socket.

Below are the advantages of this solution:

• Any Ethernet hardware, that is covered by a Linux Ethernet driver can be used
for EtherCAT.

• No modifications have to be made to the actual Ethernet drivers.

The generic approach has the following disadvantages:

• The performance is a little worse than the native approach, because the frame
data have to traverse the lower layers of the network stack.

• It is not possible to use in-kernel realtime extensions like RTAI with the generic
driver, because the network stack code uses dynamic memory allocations and
other things, that could cause the system to freeze in realtime context.
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4.4 Providing Ethernet Devices

After loading the master module, additional module(s) have to be loaded to offer
devices to the master(s) (see sec. 4.5). The master module knows the devices to
choose from the module parameters (see sec. 2.1). If the init script is used to start
the master, the drivers and devices to use can be specified in the sysconfig file (see
sec. 7.3.2).

Modules offering Ethernet devices can be

• native EtherCAT-capable network driver modules (see sec. 4.2) or

• the generic EtherCAT device driver module (see sec. 4.3).

4.5 EtherCAT Device Interface

An anticipation to the section about the master module (sec. 2.1) has to be made in
order to understand the way, a network device driver module can connect a device to
a specific EtherCAT master.

The master module provides a “device interface” for network device drivers. To use
this interface, a network device driver module must include the header devices/ecdev.h,
coming with the EtherCAT master code. This header offers a function interface for
EtherCAT devices. All functions of the device interface are named with the prefix
ecdev.

The documentation of the device interface can be found in the header file or in the
appropriate module of the interface documentation (see sec. 9.3 for generation in-
structions).

4.6 Patching Native Network Drivers

This section will describe, how to make a standard Ethernet driver EtherCAT-capable,
using the native approach (see sec. 4.2). Unfortunately, there is no standard procedure
to enable an Ethernet driver for use with the EtherCAT master, but there are a few
common techniques.

1. A first simple rule is, that netif_*() calls must be avoided for all EtherCAT
devices. As mentioned before, EtherCAT devices have no connection to the
network stack, and therefore must not call its interface functions.

2. Another important thing is, that EtherCAT devices should be operated without
interrupts. So any calls of registering interrupt handlers and enabling interrupts
at hardware level must be avoided, too.
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3. The master does not use a new socket buffer for each send operation: In-
stead there is a fix one allocated on master initialization. This socket buffer
is filled with an EtherCAT frame with every send operation and passed to the
hard_start_xmit() callback. For that it is necessary, that the socket buffer is
not be freed by the network driver as usual.

An Ethernet driver usually handles several Ethernet devices, each described by a
net_device structure with a priv_data field to attach driver-dependent data to the
structure. To distinguish between normal Ethernet devices and the ones used by
EtherCAT masters, the private data structure used by the driver could be extended
by a pointer, that points to an ec_device_t object returned by ecdev_offer() (see
sec. 4.5) if the device is used by a master and otherwise is zero.

The RealTek RTL-8139 Fast Ethernet driver is a “simple” Ethernet driver and can
be taken as an example to patch new drivers. The interesting sections can be found
by searching the string “ecdev” in the file devices/8139too-2.6.24-ethercat.c.
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Many parts of the EtherCAT master are implemented as finite state machines (FSMs).
Though this leads to a higher grade of complexity in some aspects, is opens many
new possibilities.

The below short code example exemplary shows how to read all slave states and
moreover illustrates the restrictions of “sequential” coding:

1 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

2 if (ec_master_simple_io(master , datagram )) return -1;

3 slave_states = EC_READ_U8(datagram ->data); // process datagram

The ec master simple io() function provides a simple interface for synchronously send-
ing a single datagram and receiving the result1. Internally, it queues the specified
datagram, invokes the ec master send datagrams() function to send a frame with the
queued datagram and then waits actively for its reception.

This sequential approach is very simple, reflecting in only three lines of code. The
disadvantage is, that the master is blocked for the time it waits for datagram reception.
There is no difficulty when only one instance is using the master, but if more instances
want to (synchronously2) use the master, it is inevitable to think about an alternative
to the sequential model.

Master access has to be sequentialized for more than one instance wanting to send
and receive datagrams synchronously. With the present approach, this would result in
having one phase of active waiting for each instance, which would be non-acceptable
especially in realtime circumstances, because of the huge time overhead.

A possible solution is, that all instances would be executed sequentially to queue
their datagrams, then give the control to the next instance instead of waiting for the
datagram reception. Finally, bus IO is done by a higher instance, which means that
all queued datagrams are sent and received. The next step is to execute all instances
again, which then process their received datagrams and issue new ones.

This approach results in all instances having to retain their state, when giving the
control back to the higher instance. It is quite obvious to use a finite state machine
model in this case. Section 5.1 will introduce some of the theory used, while the

1For all communication issues have been meanwhile sourced out into state machines, the function
is deprecated and stopped existing. Nevertheless it is adequate for showing it’s own restrictions.

2At this time, synchronous master access will be adequate to show the advantages of an FSM. The
asynchronous approach will be discussed in sec. 6.1
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listings below show the basic approach by coding the example from above as a state
machine:

1 // state 1

2 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

3 ec_master_queue(master , datagram ); // queue datagram

4 next_state = state_2;

5 // state processing finished

After all instances executed their current state and queued their datagrams, these are
sent and received. Then the respective next states are executed:

1 // state 2

2 if (datagram ->state != EC_DGRAM_STATE_RECEIVED) {

3 next_state = state_error;

4 return; // state processing finished

5 }

6 slave_states = EC_READ_U8(datagram ->data); // process datagram

7 // state processing finished.

See sec. 5.2 for an introduction to the state machine programming concept used in
the master code.

5.1 State Machine Theory

A finite state machine [8] is a model of behavior with inputs and outputs, where the
outputs not only depend on the inputs, but the history of inputs. The mathematical
definition of a finite state machine (or finite automaton) is a six-tuple (Σ,Γ, S, s0, δ, ω),
with

• the input alphabet Σ, with Σ 6= ∅, containing all input symbols,

• the output alphabet Γ, with Γ 6= ∅, containing all output symbols,

• the set of states S, with S 6= ∅,
• the set of initial states s0 with s0 ⊆ S, s0 6= ∅
• the transition function δ : S × Σ→ S × Γ

• the output function ω.

The state transition function δ is often specified by a state transition table, or by a
state transition diagram. The transition table offers a matrix view of the state machine
behavior (see table 5.1). The matrix rows correspond to the states (S = {s0, s1, s2})
and the columns correspond to the input symbols (Γ = {a, b, ε}). The table contents
in a certain row i and column j then represent the next state (and possibly the output)
for the case, that a certain input symbol σj is read in the state si.
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Table 5.1: A typical state transition table

a b ε
s0 s1 s1 s2

s1 s2 s1 s0

s2 s0 s0 s0

The state diagram for the same example looks like the one in figure 5.1. The states
are represented as circles or ellipses and the transitions are drawn as arrows between
them. Close to a transition arrow can be the condition that must be fulfilled to
allow the transition. The initial state is marked by a filled black circle with an arrow
pointing to the respective state.

s0 s1

s2

ε

ε

ε

a, b,

a

b

a, b

Figure 5.1: A typical state transition diagram

Deterministic and non-deterministic state machines A state machine can be de-
terministic, meaning that for one state and input, there is one (and only one) following
state. In this case, the state machine has exactly one starting state. Non-deterministic
state machines can have more than one transitions for a single state-input combina-
tion. There is a set of starting states in the latter case.

Moore and Mealy machines There is a distinction between so-called Moore ma-
chines, and Mealy machines. Mathematically spoken, the distinction lies in the output
function ω: If it only depends on the current state (ω : S → Γ), the machine corre-
sponds to the “Moore Model”. Otherwise, if ω is a function of a state and the input
alphabet (ω : S × Σ → Γ) the state machine corresponds to the “Mealy model”.
Mealy machines are the more practical solution in most cases, because their design
allows machines with a minimum number of states. In practice, a mixture of both
models is often used.

Misunderstandings about state machines There is a phenomenon called “state
explosion”, that is often taken as a counter-argument against general use of state
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machines in complex environments. It has to be mentioned, that this point is mis-
leading [9]. State explosions happen usually as a result of a bad state machine design:
Common mistakes are storing the present values of all inputs in a state, or not divid-
ing a complex state machine into simpler sub state machines. The EtherCAT master
uses several state machines, that are executed hierarchically and so serve as sub state
machines. These are also described below.

5.2 The Master’s State Model

This section will introduce the techniques used in the master to implement state
machines.

State Machine Programming There are certain ways to implement a state machine
in C code. An obvious way is to implement the different states and actions by one
big case differentiation:

1 enum {STATE_1 , STATE_2 , STATE_3 };

2 int state = STATE_1;

3

4 void state_machine_run(void *priv_data) {

5 switch (state) {

6 case STATE_1:

7 action_1 ();

8 state = STATE_2;

9 break;

10 case STATE_2:

11 action_2 ()

12 if (some_condition) state = STATE_1;

13 else state = STATE_3;

14 break;

15 case STATE_3:

16 action_3 ();

17 state = STATE_1;

18 break;

19 }

20 }

For small state machines, this is an option. The disadvantage is, that with an increas-
ing number of states the code soon gets complex and an additional case differentiation
is executed each run. Besides, lots of indentation is wasted.

The method used in the master is to implement every state in an own function and
to store the current state function with a function pointer:

1 void (* state)(void *) = state1;
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2

3 void state_machine_run(void *priv_data) {

4 state(priv_data );

5 }

6

7 void state1(void *priv_data) {

8 action_1 ();

9 state = state2;

10 }

11

12 void state2(void *priv_data) {

13 action_2 ();

14 if (some_condition) state = state1;

15 else state = state2;

16 }

17

18 void state3(void *priv_data) {

19 action_3 ();

20 state = state1;

21 }

In the master code, state pointers of all state machines3 are gathered in a single
object of the ec_fsm_master_t class. This is advantageous, because there is always
one instance of every state machine available and can be started on demand.

Mealy and Moore If a closer look is taken to the above listing, it can be seen that
the actions executed (the “outputs” of the state machine) only depend on the current
state. This accords to the “Moore” model introduced in sec. 5.1. As mentioned, the
“Mealy” model offers a higher flexibility, which can be seen in the listing below:

1 void state7(void *priv_data) {

2 if (some_condition) {

3 action_7a ();

4 state = state1;

5 }

6 else {

7 action_7b ();

8 state = state8;

9 }

10 }

3© + 7© The state function executes the actions depending on the state transition,
that is about to be done.

3All except for the EoE state machine, because multiple EoE slaves have to be handled in parallel.
For this reason each EoE handler object has its own state pointer.
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The most flexible alternative is to execute certain actions depending on the state,
followed by some actions dependent on the state transition:

1 void state9(void *priv_data) {

2 action_9 ();

3 if (some_condition) {

4 action_9a ();

5 state = state7;

6 }

7 else {

8 action_9b ();

9 state = state10;

10 }

11 }

This model is often used in the master. It combines the best aspects of both ap-
proaches.

Using Sub State Machines To avoid having too much states, certain functions of
the EtherCAT master state machine have been sourced out into sub state machines.
This helps to encapsulate the related workflows and moreover avoids the “state ex-
plosion” phenomenon described in sec. 5.1. If the master would instead use one big
state machine, the number of states would be a multiple of the actual number. This
would increase the level of complexity to a non-manageable grade.

Executing Sub State Machines If a state machine starts to execute a sub state
machine, it usually remains in one state until the sub state machine terminates. This
is usually done like in the listing below, which is taken out of the slave configuration
state machine code:

1 void ec_fsm_slaveconf_safeop(ec_fsm_t *fsm)

2 {

3 fsm ->change_state(fsm); // execute state change

4 // sub state machine

5

6 if (fsm ->change_state == ec_fsm_error) {

7 fsm ->slave_state = ec_fsm_end;

8 return;

9 }

10

11 if (fsm ->change_state != ec_fsm_end) return;

12

13 // continue state processing

14 ...
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3© change_state is the state pointer of the state change state machine. The state
function, the pointer points on, is executed. . .

6© . . . either until the state machine terminates with the error state . . .

11© . . . or until the state machine terminates in the end state. Until then, the “higher”
state machine remains in the current state and executes the sub state machine
again in the next cycle.

State Machine Descriptions The below sections describe every state machine used
in the EtherCAT master. The textual descriptions of the state machines contain
references to the transitions in the corresponding state transition diagrams, that are
marked with an arrow followed by the name of the successive state. Transitions caused
by trivial error cases (i. e. no response from slave) are not described explicitly. These
transitions are drawn as dashed arrows in the diagrams.

5.3 The Master State Machine

The master state machine is executed in the context of the master thread. Figure 5.2
shows its transition diagram. Its purposes are:

Bus monitoring The bus topology is monitored. If it changes, the bus is (re-)scanned.

Slave configuration The application-layer states of the slaves are monitored. If a
slave is not in the state it supposed to be, the slave is (re-)configured.

Request handling Requests (either originating from the application or from external
sources) are handled. A request is a job that the master shall process asyn-
chronously, for example an SII access, SDO access, or similar.

5.4 The Slave Scan State Machine

The slave scan state machine, which can be seen in figure 5.3, leads through the
process of reading desired slave information.

The scan process includes the following steps:

Node Address The node address is set for the slave, so that it can be node-addressed
for all following operations.

AL State The initial application-layer state is read.

Base Information Base information (like the number of supported FMMUs) is read
from the lower physical memory.

Data Link Information about the physical ports is read.

SII Size The size of the SII contents is determined to allocate SII image memory.

SII Data The SII contents are read into the master’s image.
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start

broadcast

clear_addresses read_state

dc_measure_delays acknowledge

write_siisdo_request reg_request

sdo_dictionary

configure_slave

scan_slave

Figure 5.2: Transition diagram of the master state machine
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Figure 5.3: Transition diagram of the slave scan state machine
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PREOP If the slave supports CoE, it is set to PREOP state using the State change
FSM (see sec. 5.6) to enable mailbox communication and read the PDO config-
uration via CoE.

PDOs The PDOs are read via CoE (if supported) using the PDO Reading FSM (see
sec. 5.8). If this is successful, the PDO information from the SII (if any) is
overwritten.

5.5 The Slave Configuration State Machine

The slave configuration state machine, which can be seen in figure 5.4, leads through
the process of configuring a slave and bringing it to a certain application-layer state.

INIT The state change FSM is used to bring the slave to the INIT state.

FMMU Clearing To avoid that the slave reacts on any process data, the FMMU
configuration are cleared. If the slave does not support FMMUs, this state is
skipped. If INIT is the requested state, the state machine is finished.

Mailbox Sync Manager Configuration If the slaves support mailbox communica-
tion, the mailbox sync managers are configured. Otherwise this state is skipped.

PREOP The state change FSM is used to bring the slave to PREOP state. If this is
the requested state, the state machine is finished.

SDO Configuration If there is a slave configuration attached (see sec. 3.1), and there
are any SDO configurations are provided by the application, these are sent to
the slave.

PDO Configuration The PDO configuration state machine is executed to apply all
necessary PDO configurations.

PDO Sync Manager Configuration If any PDO sync managers exist, they are con-
figured.

FMMU Configuration If there are FMMUs configurations supplied by the applica-
tion (i. e. if the application registered PDO entries), they are applied.

SAFEOP The state change FSM is used to bring the slave to SAFEOP state. If this
is the requested state, the state machine is finished.

OP The state change FSM is used to bring the slave to OP state. If this is the
requested state, the state machine is finished.

5.6 The State Change State Machine

The state change state machine, which can be seen in figure 5.5, leads through the
process of changing a slave’s application-layer state. This implements the states and
transitions described in [3, sec. 6.4.1].
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Figure 5.4: Transition diagram of the slave configuration state machine

6129a5f715fb, 2010/04/30 37



5 State Machines

start

check

status

error

Response
timeout

Change
timeout

end

Success

code

Refuse

ack

check_ack

start_ack

Ack only

Ack only

Figure 5.5: Transition Diagram of the State Change State Machine
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Start The new application-layer state is requested via the “AL Control Request”
register (see [3, sec. 5.3.1]).

Check for Response Some slave need some time to respond to an AL state change
command, and do not respond for some time. For this case, the command is
issued again, until it is acknowledged.

Check AL Status If the AL State change datagram was acknowledged, the “AL Con-
trol Response” register (see [3, sec. 5.3.2]) must be read out until the slave
changes the AL state.

AL Status Code If the slave refused the state change command, the reason can be
read from the “AL Status Code” field in the “AL State Changed” registers
(see [3, sec. 5.3.3]).

Acknowledge State If the state change was not successful, the master has to ac-
knowledge the old state by writing to the “AL Control request” register again.

Check Acknowledge After sending the acknowledge command, it has to read out the
“AL Control Response” register again.

The “start ack” state is a shortcut in the state machine for the case, that the master
wants to acknowledge a spontaneous AL state change, that was not requested.

5.7 The SII State Machine

The SII state machine (shown in figure 5.6) implements the process of reading or
writing SII data via the Slave Information Interface described in [2, sec. 6.4].

start_reading

read_check

error

read_fetch

end

start_writing

write_check

write_check2

Figure 5.6: Transition Diagram of the SII State Machine

This is how the reading part of the state machine works:

Start Reading The read request and the requested word address are written to the
SII attribute.
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Check Read Command If the SII read request command has been acknowledged, a
timer is started. A datagram is issued, that reads out the SII attribute for state
and data.

Fetch Data If the read operation is still busy (the SII is usually implemented as an
E2PROM), the state is read again. Otherwise the data are copied from the
datagram.

The writing part works nearly similar:

Start Writing A write request, the target address and the data word are written to
the SII attribute.

Check Write Command If the SII write request command has been acknowledged,
a timer is started. A datagram is issued, that reads out the SII attribute for the
state of the write operation.

Wait while Busy If the write operation is still busy (determined by a minimum wait
time and the state of the busy flag), the state machine remains in this state to
avoid that another write operation is issued too early.

5.8 The PDO State Machines

The PDO state machines are a set of state machines that read or write the PDO
assignment and the PDO mapping via the “CoE Communication Area” described in
[3, sec. 5.6.7.4]. For the object access, the CANopen over EtherCAT access primitives
are used (see sec. 6.2), so the slave must support the CoE mailbox protocol.

PDO Reading FSM This state machine (fig. 5.7) has the purpose to read the com-
plete PDO configuration of a slave. It reads the PDO assignment for each Sync
Manager and uses the PDO Entry Reading FSM (fig. 5.8) to read the mapping for
each assigned PDO.

Basically it reads the every Sync manager’s PDO assignment SDO’s (0x1C1x) number
of elements to determine the number of assigned PDOs for this sync manager and
then reads out the subindices of the SDO to get the assigned PDO’s indices. When
a PDO index is read, the PDO Entry Reading FSM is executed to read the PDO’s
mapped PDO entries.

PDO Entry Reading FSM This state machine (fig. 5.8) reads the PDO mapping
(the PDO entries) of a PDO. It reads the respective mapping SDO (0x1600 – 0x17ff,
or 0x1a00 – 0x1bff) for the given PDO by reading first the subindex zero (number of
elements) to determine the number of mapped PDO entries. After that, each subindex
is read to get the mapped PDO entry index, subindex and bit size.
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Figure 5.7: Transition Diagram of the PDO Reading State Machine
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Figure 5.8: Transition Diagram of the PDO Entry Reading State Machine
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Figure 5.9: Transition Diagram of the PDO Configuration State Machine
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Figure 5.10: Transition Diagram of the PDO Entry Configuration State Machine
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The EtherCAT master implements the CANopen over EtherCAT (CoE), Ethernet
over EtherCAT (EoE), File-access over EtherCAT (FoE), Vendor-specific over Ether-
CAT (VoE) and Servo Profile over EtherCAT (SoE) mailbox protocols. See the below
sections for details.

6.1 Ethernet over EtherCAT (EoE)

The EtherCAT master implements the Ethernet over EtherCAT mailbox protocol [3,
sec. 5.7] to enable the tunneling of Ethernet frames to special slaves, that can either
have physical Ethernet ports to forward the frames to, or have an own IP stack to
receive the frames.

Virtual Network Interfaces The master creates a virtual EoE network interface for
every EoE-capable slave. These interfaces are called either

eoeXsY for a slave without an alias address (see sec. 7.1.2), where X is the master
index and Y is the slave’s ring position, or

eoeXaY for a slave with a non-zero alias address, where X is the master index and
Y is the decimal alias address.

Frames sent to these interfaces are forwarded to the associated slaves by the master.
Frames, that are received by the slaves, are fetched by the master and forwarded to
the virtual interfaces.

This bears the following advantages:

• Flexibility: The user can decide, how the EoE-capable slaves are interconnected
with the rest of the world.

• Standard tools can be used to monitor the EoE activity and to configure the
EoE interfaces.

• The Linux kernel’s layer-2-bridging implementation (according to the IEEE
802.1D MAC Bridging standard) can be used natively to bridge Ethernet traffic
between EoE-capable slaves.

• The Linux kernel’s network stack can be used to route packets between EoE-
capable slaves and to track security issues, just like having physical network
interfaces.
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EoE Handlers The virtual EoE interfaces and the related functionality is encap-
sulated in the ec_eoe_t class. An object of this class is called “EoE handler”. For
example the master does not create the network interfaces directly: This is done inside
the constructor of an EoE handler. An EoE handler additionally contains a frame
queue. Each time, the kernel passes a new socket buffer for sending via the interface’s
hard_start_xmit() callback, the socket buffer is queued for transmission by the EoE
state machine (see below). If the queue gets filled up, the passing of new socket buffers
is suspended with a call to netif_stop_queue().

Creation of EoE Handlers During bus scanning (see sec. 5.4), the master deter-
mines the supported mailbox protocols foe each slave. This is done by examining the
“Supported Mailbox Protocols” mask field at word address 0x001C of the SII. If bit
1 is set, the slave supports the EoE protocol. In this case, an EoE handler is created
for that slave.

EoE State Machine Every EoE handler owns an EoE state machine, that is used
to send frames to the corresponding slave and receive frames from the it via the EoE
communication primitives. This state machine is showed in figure 6.1.

RX_START RX_CHECK RX_FETCH

TX_START TX_SENT

Figure 6.1: Transition Diagram of the EoE State Machine

RX START The beginning state of the EoE state machine. A mailbox check data-
gram is sent, to query the slave’s mailbox for new frames. → RX CHECK

RX CHECK The mailbox check datagram is received. If the slave’s mailbox did not
contain data, a transmit cycle is started. → TX START

If there are new data in the mailbox, a datagram is sent to fetch the new data.
→ RX FETCH

RX FETCH The fetch datagram is received. If the mailbox data do not contain
a “EoE Fragment request” command, the data are dropped and a transmit
sequence is started. → TX START

If the received Ethernet frame fragment is the first fragment, a new socket buffer
is allocated. In either case, the data are copied into the correct position of the
socket buffer.
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If the fragment is the last fragment, the socket buffer is forwarded to the network
stack and a transmit sequence is started. → TX START

Otherwise, a new receive sequence is started to fetch the next fragment. → RX -
START

TX START The beginning state of a transmit sequence. It is checked, if the trans-
mission queue contains a frame to send. If not, a receive sequence is started.
→ RX START

If there is a frame to send, it is dequeued. If the queue was inactive before
(because it was full), the queue is woken up with a call to netif wake queue().
The first fragment of the frame is sent. → TX SENT

TX SENT It is checked, if the first fragment was sent successfully. If the current
frame consists of further fragments, the next one is sent. → TX SENT

If the last fragment was sent, a new receive sequence is started. → RX START

EoE Processing To execute the EoE state machine of every active EoE handler,
there must be a cyclic process. The easiest solution would be to execute the EoE
state machines synchronously with the master state machine (see sec. 5.3). This
approach has the following disadvantage:

Only one EoE fragment could be sent or received every few cycles. This causes the
data rate to be very low, because the EoE state machines are not executed in the
time between the application cycles. Moreover, the data rate would be dependent on
the period of the application task.

To overcome this problem, an own cyclic process is needed to asynchronously execute
the EoE state machines. For that, the master owns a kernel timer, that is executed
each timer interrupt. This guarantees a constant bandwidth, but poses the new
problem of concurrent access to the master. The locking mechanisms needed for this
are introduced in sec. 3.4.

Automatic Configuration By default, slaves are left in PREOP state, if no con-
figuration is applied. If an EoE interface link is set to “up”, the requested slave’s
application-layer state is automatically set to OP.

6.2 CANopen over EtherCAT (CoE)

The CANopen over EtherCAT protocol [3, sec. 5.6] is used to configure slaves and
exchange data objects on application level.
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SDO Download State Machine The best time to apply SDO configurations is
during the slave’s PREOP state, because mailbox communication is already possible
and slave’s application will start with updating input data in the succeeding SAFEOP
state. Therefore the SDO configuration has to be part of the slave configuration state
machine (see sec. 5.5): It is implemented via an SDO download state machine, that is
executed just before entering the slave’s SAFEOP state. In this way, it is guaranteed
that the SDO configurations are applied each time, the slave is reconfigured.

The transition diagram of the SDO Download state machine can be seen in figure 6.2.

START REQUEST CHECK RESPONSE

ENDERROR

Figure 6.2: Transition diagram of the CoE download state machine

START The beginning state of the CoE download state machine. The “SDO Down-
load Normal Request” mailbox command is sent. → REQUEST

REQUEST It is checked, if the CoE download request has been received by the
slave. After that, a mailbox check command is issued and a timer is started.
→ CHECK

CHECK If no mailbox data is available, the timer is checked.

• If it timed out, the SDO download is aborted. → ERROR

• Otherwise, the mailbox is queried again. → CHECK

If the mailbox contains new data, the response is fetched. → RESPONSE

RESPONSE If the mailbox response could not be fetched, the data is invalid, the
wrong protocol was received, or a “Abort SDO Transfer Request” was received,
the SDO download is aborted. → ERROR

If a “SDO Download Normal Response” acknowledgement was received, the
SDO download was successful. → END

END The SDO download was successful.

ERROR The SDO download was aborted due to an error.
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6.3 Vendor specific over EtherCAT (VoE)

The VoE protocol opens the possibility to implement a vendor-specific mailbox com-
munication protocol. VoE mailbox messages are prepended by a VoE header con-
taining a 32-bit vendor ID and a 16-bit vendor-type. There are no more constraints
regarding this protocol.

The EtherCAT master allows to create multiple VoE handlers per slave configuration
via the application interface (see chap. 3). These handlers contain the state machine
necessary for the communication via VoE.

For more information about using VoE handlers, see sec. 3.3 or the example applica-
tions provided in the examples/ subdirectory.

6.4 Servo Profile over EtherCAT (SoE)

The SoE protocol implements the Service Channel layer, specified in IEC 61800-7 [15]
via EtherCAT mailboxes.

The SoE protocol is quite similar to the CoE protocol (see sec. 6.2). Instead of SDO
indices and subindices, so-called identification numbers (IDNs) identify parameters.

The implementation covers the “SCC Read” and “SCC Write” primitives, each with
the ability to fragment data.

There are several ways to use the SoE implementation:

• Reading and writing IDNs via the command-line tool (see sec. 7.1.18).

• Storing configurations for arbitrary IDNs via the application interface (see chap. 3,
i. e. ecrt_slave_config_idn()). These configurations are written to the slave
during configuration in PREOP state, before going to SAFEOP.

• The user-space library (see sec. 7.2), offers functions to read/write IDNs in
blocking mode (ecrt_master_read_idn(), ecrt_master_write_idn()).
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For the master runs as a kernel module, accessing it is natively limited to analyzing
Syslog messages and controlling using modutils.

It was necessary to implement further interfaces, that make it easier to access the
master from userspace and allow a finer influence. It should be possible to view and
to change special parameters at runtime.

Bus visualization is another point: For development and debugging purposes it is
necessary to show the connected slaves with a single command, for instance (see
sec. 7.1).

The application interface has to be available in userspace, to allow userspace programs
to use EtherCAT master functionality. This was implemented via a character device
and a userspace library (see sec. 7.2).

Another aspect is automatic startup and configuration. The master must be able to
automatically start up with a persistent configuration (see sec. 7.3).

A last thing is monitoring EtherCAT communication. For debugging purposes, there
had to be a way to analyze EtherCAT datagrams. The best way would be with
a popular network analyzer, like Wireshark [7] (the former Ethereal) or others (see
sec. 7.4).

This chapter covers all these points and introduces the interfaces and tools to make
all that possible.

7.1 Command-line Tool

7.1.1 Character Devices

Each master instance will get a character device as a userspace interface. The devices
are named /dev/EtherCATx, where x ∈ {0 . . . n} is the index of the master.

Device Node Creation The character device nodes are automatically created, if the
udev Package is installed. See sec. 9.5 for how to install and configure it.
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7.1.2 Setting Alias Addresses

ethercat alias [OPTIONS] <ALIAS >

Write alias addresses.

Arguments:

ALIAS must be an unsigned 16 bit number. Zero means

removing an alias address.

If multiple slaves are selected , the --force option

is required.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Acknowledge writing aliases of

multiple slaves.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.3 Displaying the Bus Configuration

ethercat config [OPTIONS]

Show slave configurations.

Without the --verbose option , slave configurations are

output one -per -line. Example:

1001:0 0x0000003b /0 x02010000 3 OP

| | | |

| | | \- Application -layer

| | | state of the attached

| | | slave , or ’-’, if no

| | | slave is attached.

| | \- Absolute decimal ring

| | position of the attached

| | slave , or ’-’ if none

| | attached.

| \- Expected vendor ID and product code (both

| hexadecimal ).

\- Alias address and relative position (both decimal ).

With the --verbose option given , the configured PDOs and

SDOs are output in addition.

Configuration selection:

Slave configurations can be selected with
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the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slave configurations are displayed.

2) If only the --position option is given , an alias

of zero is assumed (see 4)).

3) If only the --alias option is given , all slave

configurations with the given alias address

are displayed.

4) If both the --alias and the --position option are

given , the selection can match a single

configuration , that is displayed , if it exists.

Command -specific options:

--alias -a <alias > Configuration alias (see above).

--position -p <pos > Relative position (see above).

--verbose -v Show detailed configurations.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.4 Output PDO information in C Language

ethercat cstruct [OPTIONS]

Generate slave PDO information in C language.

The output C code can be used directly with the

ecrt_slave_config_pdos () function of the application

interface.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.5 Displaying Process Data

ethercat data [OPTIONS]

Output binary domain process data.

Data of multiple domains are concatenated.

Command -specific options:

--domain -d <index > Positive numerical domain index.

If omitted , data of all domains

are output.
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Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.6 Setting a Master’s Debug Level

ethercat debug <LEVEL >

Set the master ’s debug level.

Debug messages are printed to syslog.

Arguments:

LEVEL can have one of the following values:

0 for no debugging output ,

1 for some debug messages , or

2 for printing all frame contents (use with caution !).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.7 Configured Domains

ethercat domains [OPTIONS]

Show configured domains.

Without the --verbose option , the domains are displayed

one -per -line. Example:

Domain0: LogBaseAddr 0x00000000 , Size 6, WorkingCounter 0/1

The domain ’s base address for the logical datagram

(LRD/LWR/LRW) is displayed followed by the domain ’s

process data size in byte. The last values are the current

datagram working counter sum and the expected working

counter sum. If the values are equal , all PDOs were

exchanged during the last cycle.

If the --verbose option is given , the participating slave

configurations/FMMUs and the current process data are

additionally displayed:

Domain1: LogBaseAddr 0x00000006 , Size 6, WorkingCounter 0/1

SlaveConfig 1001:0 , SM3 ( Input), LogAddr 0x00000006 , Size 6

0x00 0x00 0x00 0x00 0x00 0x00

The process data are displayed as hexadecimal bytes.

Command -specific options:

--domain -d <index > Positive numerical domain index.
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If ommitted , all domains are

displayed.

--verbose -v Show FMMUs and process data

in addition.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.8 SDO Access

ethercat download [OPTIONS] <INDEX > <SUBINDEX > <VALUE >

Write an SDO entry to a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned

16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

VALUE is the value to download and must correspond

to the SDO entry datatype (see above).

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat upload [OPTIONS] <INDEX > <SUBINDEX >
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Read an SDO entry from a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned

16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.9 EoE Statistics

ethercat eoe

Display Ethernet over EtherCAT statictics.

The TxRate and RxRate are displayed in Byte/s.

7.1.10 File-Access over EtherCAT

ethercat foe_read [OPTIONS] <SOURCEFILE >

Read a file from a slave via FoE.

This command requires a single slave to be selected.
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Arguments:

SOURCEFILE is the name of the source file on the slave.

Command -specific options:

--output -file -o <file > Local target filename. If

’-’ (default), data are

printed to stdout.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat foe_write [OPTIONS] <FILENAME >

Store a file on a slave via FoE.

This command requires a single slave to be selected.

Arguments:

FILENAME can either be a path to a file , or ’-’. In

the latter case , data are read from stdin and

the --output -file option has to be specified.

Command -specific options:

--output -file -o <file > Target filename on the slave.

If the FILENAME argument is

’-’, this is mandatory.

Otherwise , the basename () of

FILENAME is used by default.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.11 Creating Topology Graphs

ethercat graph [OPTIONS]

Output the bus topology as a graph.

The bus is output in DOT language (see

http :// www.graphviz.org/doc/info/lang.html), which can

be processed with the tools from the Graphviz

package. Example:

ethercat graph | dot -Tsvg > bus.svg
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See ’man dot ’ for more information.

7.1.12 Master and Ethernet Devices

ethercat master [OPTIONS]

Show master and Ethernet device information.

Command -specific options:

--master -m <indices > Master indices. A comma -separated

list with ranges is supported.

Example: 1,4,5,7-9. Default: - (all).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.13 Sync Managers, PDOs and PDO Entries

ethercat pdos [OPTIONS]

List Sync managers , PDO assignment and mapping.

The information is displayed in three layers , which are

indented accordingly:

1) Sync managers - Contains the sync manager information

from the SII: Index , physical start address , default

size , control register and enable word. Example:

SM3: PhysAddr 0x1100 , DefaultSize 0, ControlRegister 0x20 , Enable 1

2) Assigned PDOs - PDO direction , hexadecimal index and

the PDO name , if avaliable. Note that a ’Tx ’ and ’Rx ’

are seen from the slave ’s point of view. Example:

TxPDO 0x1a00 "Channel1"

3) Mapped PDO entries - PDO entry index and subindex (both

hexadecimal), the length in bit and the description , if

available. Example:

PDO entry 0x3101:01, 8 bit , "Status"

Note , that the displayed PDO assignment and PDO mapping

information can either originate from the SII or from the

CoE communication area.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of
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the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.14 Register Access

ethercat reg_read [OPTIONS] <OFFSET > [LENGTH]

Output a slave ’s register contents.

This command requires a single slave to be selected.

Arguments:

OFFSET is the register address. Must

be an unsigned 16 bit number.

LENGTH is the number of bytes to read and must also be

an unsigned 16 bit number. OFFSET plus LENGTH

may not exceed 64k. The length is ignored (and

can be omitted), if a selected data type

implies a length.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat reg_write [OPTIONS] <OFFSET > <DATA >

Write data to a slave ’s registers.

This command requires a single slave to be selected.

Arguments:

OFFSET is the register address to write to.

DATA depends on whether a datatype was specified

with the --type option: If not , DATA must be
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either a path to a file with data to write ,

or ’-’, which means , that data are read from

stdin. If a datatype was specified , VALUE is

interpreted respective to the given type.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.15 SDO Dictionary

ethercat sdos [OPTIONS]

List SDO dictionaries.

SDO dictionary information is displayed in two layers ,

which are indented accordingly:

1) SDOs - Hexadecimal SDO index and the name. Example:

SDO 0x1018 , "Identity object"

2) SDO entries - SDO index and SDO entry subindex (both

hexadecimal) followed by the access rights (see

below), the data type , the length in bit , and the

description. Example:

0x1018 :01, rwrwrw , uint32 , 32 bit , "Vendor id"

The access rights are specified for the AL states PREOP ,

SAFEOP and OP. An ’r’ means , that the entry is readable

in the corresponding state , an ’w’ means writable ,

respectively. If a right is not granted , a dash ’-’ is

shown.

If the --quiet option is given , only the SDOs are output.
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Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--quiet -q Only output SDOs (without the

SDO entries ).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.16 SII Access

It is possible to directly read or write the complete SII contents of the slaves. This
was introduced for the reasons below:

• The format of the SII data is still in development and categories can be added
in the future. With read and write access, the complete memory contents can
be easily backed up and restored.

• Some SII data fields have to be altered (like the alias address). A quick writing
must be possible for that.

• Through reading access, analyzing category data is possible from userspace.

ethercat sii_read [OPTIONS]

Output a slave ’s SII contents.

This command requires a single slave to be selected.

Without the --verbose option , binary SII contents are

output.

With the --verbose option given , a textual representation

of the data is output , that is separated by SII category

names.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--verbose -v Output textual data with

category names.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Reading out SII data is as easy as other commands. Though the data are in binary
format, analysis is easier with a tool like hexdump:

$ ethercat sii read --position 3 | hexdump

0000000 0103 0000 0000 0000 0000 0000 0000 008c
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0000010 0002 0000 3052 07f0 0000 0000 0000 0000

0000020 0000 0000 0000 0000 0000 0000 0000 0000

...

Backing up SII contents can easily done with a redirection:

$ ethercat sii read --position 3 > sii-of-slave3.bin

To download SII contents to a slave, writing access to the master’s character device
is necessary (see sec. 7.1.1).

ethercat sii_write [OPTIONS] <FILENAME >

Write SII contents to a slave.

This command requires a single slave to be selected.

The file contents are checked for validity and integrity.

These checks can be overridden with the --force option.

Arguments:

FILENAME must be a path to a file that contains a

positive number of words. If it is ’-’,

data are read from stdin.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Override validity checks.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

# ethercat sii write --position 3 sii-of-slave3.bin

The SII contents will be checked for validity and then sent to the slave. The write
operation may take a few seconds.

7.1.17 Slaves on the Bus

Slave information can be gathered with the subcommand slaves:

ethercat slaves [OPTIONS]

Display slaves on the bus.

If the --verbose option is not given , the slaves are

displayed one -per -line. Example:
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1 5555:0 PREOP + EL3162 2C. Ana. Input 0-10V

| | | | | |

| | | | | \- Name from the SII if avaliable ,

| | | | | otherwise vendor ID and product

| | | | | code (both hexadecimal ).

| | | | \- Error flag. ’+’ means no error ,

| | | | ’E’ means that scan or

| | | | configuration failed.

| | | \- Current application -layer state.

| | \- Decimal relative position to the last

| | slave with an alias address set.

| \- Decimal alias address of this slave (if set),

| otherwise of the last slave with an alias set ,

| or zero , if no alias was encountered up to this

| position.

\- Absolute ring position in the bus.

If the --verbose option is given , a detailed (multi -line)

description is output for each slave.

Slave selection:

Slaves for this and other commands can be selected with

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slaves are selected.

2) If only the --position option is given , it is

interpreted as an absolute ring position and

a slave with this position is matched.

3) If only the --alias option is given , all slaves

with the given alias address and subsequent

slaves before a slave with a different alias

address match (use -p0 if only the slaves

with the given alias are desired , see 4)).

4) If both the --alias and the --position option are

given , the latter is interpreted as relative

position behind any slave with the given alias.

Command -specific options:

--alias -a <alias > Slave alias (see above).

--position -p <pos > Slave position (see above).

--verbose -v Show detailed slave information.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Below is a typical output:

$ ethercat slaves

0 0:0 PREOP + EK1100 Ethernet Kopplerklemme (2A E-Bus)

1 5555:0 PREOP + EL3162 2K. Ana. Eingang 0-10V

2 5555:1 PREOP + EL4102 2K. Ana. Ausgang 0-10V
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3 5555:2 PREOP + EL2004 4K. Dig. Ausgang 24V, 0,5A

7.1.18 SoE IDN Access

ethercat soe_read [OPTIONS] <IDN >

Read an SoE IDN from a slave.

This command requires a single slave to be selected.

Arguments:

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data

Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number

or a string like ’P-0-150’.

Data of the given IDN are read and displayed according to

the given datatype , or as raw hex bytes.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat soe_write [OPTIONS] <IDN > <VALUE >

Write an SoE IDN to a slave.

This command requires a single slave to be selected.

Arguments:

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data
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Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number

or a string like ’P-0-150’.

VALUE is the value to write (see below ).

The VALUE argument is interpreted as the given data type

(--type is mandatory) and written to the selected slave.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.19 Requesting Application-Layer States

ethercat states [OPTIONS] <STATE >

Request application -layer states.

Arguments:

STATE can be ’INIT ’, ’PREOP ’, ’BOOT ’, ’SAFEOP ’, or ’OP ’.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.20 Displaying the Master Version

ethercat version [OPTIONS]

Show version information.
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7.1.21 Generating Slave Description XML

ethercat xml [OPTIONS]

Generate slave information XML.

Note that the PDO information can either originate

from the SII or from the CoE communication area. For

slaves , that support configuring PDO assignment and

mapping , the output depends on the last configuration.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.2 Userspace Library

The native application interface (see chap. 3) resides in kernelspace and hence is
only accessible from inside the kernel. To make the application interface available
from userspace programs, a userspace library has been created, that can be linked to
programs under the terms and conditions of the LGPL, version 2 [5].

The library is named libethercat. Its sources reside in the lib/ subdirectory and are
build by default when using make. It is installed in the lib/ path below the installation
prefix as libethercat.a (for static linking), libethercat.la (for the use with libtool) and
libethercat.so (for dynamic linking).

7.2.1 Using the Library

The application interface header ecrt.h can be used both in kernel and in user context.

The following minimal example shows how to build a program with EtherCAT func-
tionality. An entire example can be found in the examples/user/ path of the master
sources.

#include <ecrt.h>

int main(void)

{

ec_master_t *master = ecrt_request_master (0);

if (! master)

return 1; // error
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pause (); // wait for signal

return 0;

}

The program can be compiled and dynamically linked to the library with the below
command:

gcc ethercat.c -o ectest -I/opt/etherlab/include \

-L/opt/etherlab/lib -lethercat \

-Wl ,--rpath -Wl ,/opt/etherlab/lib

The library can also be linked statically to the program:

gcc -static ectest.c -o ectest -I/opt/etherlab/include \

/opt/etherlab/lib/libethercat.a

7.2.2 Implementation

Basically the kernel API was transferred into userspace via the master character device
(see chap. 2, fig. 2.1 and sec. 7.1.1).

The function calls of the kernel API are mapped to the userspace via an ioctl()

interface. The userspace API functions share a set of generic ioctl() calls. The
kernel part of the interface calls the according API functions directly, what results in
a minimum additional delay (see sec. 7.2.3).

For performance reasons, the actual domain process data (see sec. 2.3) are not copied
between kernel and user memory on every access: Instead, the data are memory-
mapped to the userspace application. Once the master is configured and activated,
the master module creates one process data memory area spanning all domains and
maps it to userspace, so that the application can directly access the process data. As
a result, there is no additional delay when accessing process data from userspace.

Kernel/User API Differences Because of the memory-mapping of the process data,
the memory is managed internally by the library functions. As a result, it is not possi-
ble to provide external memory for domains, like in the kernel API. The corresponding
functions are only available in kernelspace. This is the only difference when using the
application interface in userspace.

7.2.3 Timing

An interesting aspect is the timing of the userspace library calls compared to those of
the kernel API. Table 7.1 shows the call times and standard deviancies of typical (and
time-critical) API functions measured on an Intel Pentium 4 M CPU with 2.2 GHz
and a standard 2.6.26 kernel.
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Table 7.1: Application Interface Timing Comparison

Kernelspace Userspace
Function µ(t) σ(t) µ(t) σ(t)
ecrt_master_receive() 1.1 µs 0.3 µs 2.2 µs 0.5 µs
ecrt_domain_process() < 0.1 µs < 0.1 µs 1.0 µs 0.2 µs
ecrt_domain_queue() < 0.1 µs < 0.1 µs 1.0 µs 0.1 µs
ecrt_master_send() 1.8 µs 0.2 µs 2.5 µs 0.5 µs

The test results show, that for this configuration, the userspace API causes about
1 µs additional delay for each function, compared to the kernel API.

7.3 System Integration

To integrate the EtherCAT master as a service into a running system, it comes with
an init script and a sysconfig file, that are described below.

7.3.1 Init Script

The EtherCAT master init script conforms to the requirements of the “Linux Standard
Base” (LSB, [6]). The script is installed to etc/init.d/ethercat below the installation
prefix and has to be copied (or better: linked) to the appropriate location (see sec. 9),
before the master can be inserted as a service. Please note, that the init script depends
on the sysconfig file described below.

To provide service dependencies (i. e. which services have to be started before others)
inside the init script code, LSB defines a special comment block. System tools can
extract this information to insert the EtherCAT init script at the correct place in the
startup sequence:

# Required -Start: $local_fs $syslog $network

# Should -Start: $time ntp

# Required -Stop: $local_fs $syslog $network

# Should -Stop: $time ntp

# Default -Start: 3 5

# Default -Stop: 0 1 2 6

# Short -Description: EtherCAT master

# Description: EtherCAT master devel

### END INIT INFO

#------------------------------------------------------------------------------
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7.3.2 Sysconfig File

For persistent configuration, the init script uses a sysconfig file installed to etc/syscon-
fig/ethercat (below the installation prefix), that is mandatory for the init script. The
sysconfig file contains all configuration variables needed to operate one or more mas-
ters. The documentation is inside the file and included below:

1 #

2 # Master devices.

3 #

4 # The MASTER <X>_DEVICE variable specifies the Ethernet device for a master

5 # with index ’X’.

6 #

7 # Specify the MAC address (hexadecimal with colons) of the Ethernet device to

8 # use. Example: "00:00:08:44: ab:66"

9 #

10 # The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning: It tells

11 # the master to accept the first device offered by any Ethernet driver.

12 #

13 # The MASTER <X>_DEVICE variables also determine , how many masters will be

14 # created: A non -empty variable MASTER0_DEVICE will create one master , adding

15 # a non -empty variable MASTER1_DEVICE will create a second master , and so on.

16 #

17 MASTER0_DEVICE =""

18 #MASTER1_DEVICE =""

19

20 #

21 # Ethernet driver modules to use for EtherCAT operation.

22 #

23 # Specify a non -empty list of Ethernet drivers , that shall be used for EtherCAT

24 # operation.

25 #

26 # Except for the generic Ethernet driver module , the init script will try to

27 # unload the usual Ethernet driver modules in the list and replace them with

28 # the EtherCAT -capable ones. If a certain (EtherCAT -capable) driver is not

29 # found , a warning will appear.

30 #

31 # Possible values: 8139too , e100 , e1000 , r8169 , generic.

32 # Separate multiple drivers with spaces.

33 #

34 # Note: The e100 , e1000 , r8169 and generic drivers are not built by default.

35 # Enable them with the --enable -<driver > configure switches.

36 #

37 DEVICE_MODULES =""

38

39 #

40 # Flags for loading kernel modules.

41 #

42 # This can usually be left empty. Adjust this variable , if you have problems

43 # with module loading.

44 #

45 #MODPROBE_FLAGS ="-b"

46

47 #------------------------------------------------------------------------------

7.3.3 Starting the Master as a Service

After the init script and the sysconfig file are placed into the right location, the
EtherCAT master can be inserted as a service. The different Linux distributions offer
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different ways to mark a service for starting and stopping in certain runlevels. For
example, SUSE Linux provides the insserv command:

# insserv ethercat

The init script can also be used for manually starting and stopping the EtherCAT
master. It has to be executed with one of the parameters start, stop, restart or
status.

# /etc/init.d/ethercat restart

Shutting down EtherCAT master done

Starting EtherCAT master done

7.4 Debug Interfaces

EtherCAT buses can always be monitored by inserting a switch between master and
slaves. This allows to connect another PC with a network monitor like Wireshark [7],
for example. It is also possible to listen to local network interfaces on the machine
running the EtherCAT master directly. If the generic Ethernet driver (see sec. 4.3) is
used, the network monitor can directly listen on the network interface connected to
the EtherCAT bus.

When using native Ethernet drivers (see sec. 4.2), there are no local network interfaces
to listen to, because the Ethernet devices used for EtherCAT are not registered at
the network stack. For that case, so-called “debug interfaces” are supported, which
are virtual network interfaces allowing to capture EtherCAT traffic with a network
monitor (like Wireshark or tcpdump) running on the master machine without using
external hardware. To use this functionality, the master sources have to be configured
with the --enable-debug-if switch (see sec. 9).

Every EtherCAT master registers a read-only network interface per attached physical
Ethernet device. The network interfaces are named ecdbgmX for the main device,
and ecdbgbX for the backup device (for future use), where X is the master index. The
below listing shows a debug interface among some standard network interfaces:

# ip link

1: lo: <LOOPBACK ,UP > mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

4: eth0: <BROADCAST ,MULTICAST > mtu 1500 qdisc noop qlen 1000

link/ether 00:13:46:3b:ad:d7 brd ff:ff:ff:ff:ff:ff

8: ecdbgm0: <BROADCAST ,MULTICAST > mtu 1500 qdisc pfifo_fast

qlen 1000

link/ether 00:04:61:03: d1:01 brd ff:ff:ff:ff:ff:ff

While a debug interface is enabled, all frames sent or received to or from the physical
device are additionally forwarded to the debug interface by the corresponding master.
Network interfaces can be enabled with the below command:
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# ip link set dev ecdbgm0 up

Please note, that the frame rate can be very high. With an application connected,
the debug interface can produce thousands of frames per second.

Attention The socket buffers needed for the operation of debug interfaces have to
be allocated dynamically. Some Linux realtime extensions (like RTAI) do not allow
this in realtime context!

6129a5f715fb, 2010/04/30 71



7 Userspace Interfaces

72 6129a5f715fb, 2010/04/30



8 Timing Aspects

Although EtherCAT’s timing is highly deterministic and therefore timing issues are
rare, there are a few aspects that can (and should be) dealt with.

8.0.1 Application Interface Profiling

One of the most important timing aspects are the execution times of the application
interface functions, that are called in cyclic context. These functions make up an
important part of the overall timing of the application. To measure the timing of the
functions, the following code was used:

c0 = get_cycles ();

ecrt_master_receive(master );

c1 = get_cycles ();

ecrt_domain_process(domain1 );

c2 = get_cycles ();

ecrt_master_run(master );

c3 = get_cycles ();

ecrt_master_send(master );

c4 = get_cycles ();

Between each call of an interface function, the CPU timestamp counter is read. The
counter differences are converted to µs with help of the cpu_khz variable, that contains
the number of increments per ms.

For the actual measuring, a system with a 2.0 GHz CPU was used, that ran the above
code in an RTAI thread with a period of 100 µs. The measuring was repeated n = 100
times and the results were averaged. These can be seen in table 8.1.

Table 8.1: Profiling of an Application Cycle on a 2.0 GHz Processor

Element Mean Duration [s] Standard Deviancy [µs]
ecrt master receive() 8.04 0.48
ecrt domain process() 0.14 0.03
ecrt master run() 0.29 0.12
ecrt master send() 2.18 0.17
Complete Cycle 10.65 0.69
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It is obvious, that the functions accessing hardware make up the lion’s share. The
ec master receive() executes the ISR of the Ethernet device, analyzes datagrams and
copies their contents into the memory of the datagram objects. The ec master send()
assembles a frame out of different datagrams and copies it to the hardware buffers.
Interestingly, this makes up only a quarter of the receiving time.

The functions that only operate on the masters internal data structures are very
fast (∆t < 1 µs). Interestingly the runtime of ec domain process() has a small stan-
dard deviancy relative to the mean value, while this ratio is about twice as big for
ec master run(): This probably results from the latter function having to execute
code depending on the current state and the different state functions are more or less
complex.

For a realtime cycle makes up about 10 µs, the theoretical frequency can be up to
100 kHz. For two reasons, this frequency keeps being theoretical:

1. The processor must still be able to run the operating system between the real-
time cycles.

2. The EtherCAT frame must be sent and received, before the next realtime cycle
begins. The determination of the bus cycle time is difficult and covered in
sec. 8.0.2.

8.0.2 Bus Cycle Measuring

For measuring the time, a frame is “on the wire”, two timestamps must be taken:

1. The time, the Ethernet hardware begins with physically sending the frame.

2. The time, the frame is completely received by the Ethernet hardware.

Both times are difficult to determine. The first reason is, that the interrupts are
disabled and the master is not notified, when a frame is sent or received (polling
would distort the results). The second reason is, that even with interrupts enabled,
the time from the event to the notification is unknown. Therefore the only way to
confidently determine the bus cycle time is an electrical measuring.

Anyway, the bus cycle time is an important factor when designing realtime code,
because it limits the maximum frequency for the cyclic task of the application. In
practice, these timing parameters are highly dependent on the hardware and often a
trial and error method must be used to determine the limits of the system.

The central question is: What happens, if the cycle frequency is too high? The answer
is, that the EtherCAT frames that have been sent at the end of the cycle are not yet
received, when the next cycle starts. First this is noticed by ecrt domain process(),
because the working counter of the process data datagrams were not increased. The
function will notify the user via Syslog1. In this case, the process data keeps being the

1To limit Syslog output, a mechanism has been implemented, that outputs a summarized notifica-
tion at maximum once a second.

74 6129a5f715fb, 2010/04/30



same as in the last cycle, because it is not erased by the domain. When the domain
datagrams are queued again, the master notices, that they are already queued (and
marked as sent). The master will mark them as unsent again and output a warning,
that datagrams were “skipped”.

On the mentioned 2.0 GHz system, the possible cycle frequency can be up to 25 kHz
without skipped frames. This value can surely be increased by choosing faster hard-
ware. Especially the RealTek network hardware could be replaced by a faster one.
Besides, implementing a dedicated ISR for EtherCAT devices would also contribute
to increasing the latency. These are two points on the author’s to-do list.
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9.1 Getting the Software

There are several ways to get the master software:

1. An official release (for example 1.5.0), can be downloaded from the master’s
website1 at the EtherLab project [1] as a tarball.

2. The most recent development revision (and moreover any other revision) can
be obtained via the Mercurial [13] repository on the master’s project page on
SourceForge.net2. The whole repository can be cloned with the command

hg clone http :// etherlabmaster.hg.sourceforge.net/hgweb/

etherlabmaster/etherlabmaster local-dir

3. Without a local Mercurial installation, tarballs of arbitrary revisions can be
downloaded via the “bz2” links in the browsable repository pages3.

9.2 Building the Software

After downloading a tarball or cloning the repository as described in sec. 9.1, the
sources have to be prepared and configured for the build process.

When a tarball was downloaded, it has to be extracted with the following commands:

$ tar xjf ethercat-1.5.0.tar.bz2

$ cd ethercat-1.5.0/

The software configuration is managed with Autoconf [14] so the released versions
contain a configure shell script, that has to be executed for configuration (see below).

Bootstrap When downloading or cloning directly from the repository, the configure

script does not yet exist. It can be created via the bootstrap.sh script in the master
sources. The autoconf and automake packages are required for this.

1http://etherlab.org/en/ethercat/index.php
2http://sourceforge.net/projects/etherlabmaster
3http://etherlabmaster.hg.sourceforge.net/hgweb/etherlabmaster/etherlabmaster
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Configuration and Build The configuration and the build process follow the below
commands:

$ ./configure

$ make

$ make modules

Table 9.1 lists important configuration switches and options.

9.3 Building the Interface Documentation

The source code is documented using Doxygen [12]. To build the HTML documen-
tation, the Doxygen software has to be installed. The below command will generate
the documents in the subdirectory doxygen-output :

$ make doc

The interface documentation can be viewed by pointing a browser to the file doxygen-
output/html/index.html. The functions and data structures of the application interface
a covered by an own module “Application Interface”.

9.4 Installing the Software

The below commands have to be entered as root : The first one will install the Ether-
CAT header, init script, sysconfig file and the userspace tool to the prefix path. The
second one will install the kernel modules to the kernel’s modules directory. The final
depmod call is necessary to include the kernel modules into the modules.dep file to
make it available to the modprobe command, used in the init script.

# make install

# make modules install

# depmod

If the target kernel’s modules directory is not under /lib/modules, a different destina-
tion directory can be specified with the DESTDIR make variable. For example:

# make DESTDIR=/vol/nfs/root modules install

This command will install the compiled kernel modules to /vol/nfs/root/lib/modules,
prepended by the kernel release.

If the EtherCAT master shall be run as a service4 (see sec. 7.3), the init script and the
sysconfig file have to be copied (or linked) to the appropriate locations. The below
example is suitable for SUSE Linux. It may vary for other distributions.

4Even if the EtherCAT master shall not be loaded on system startup, the use of the init script is
recommended for manual (un-)loading.
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Table 9.1: Configuration options

Option/Switch Description Default
--prefix Installation prefix /opt/etherlab
--with-linux-dir Linux kernel sources Use running kernel
--with-rtai-dir RTAI path (only for

RTAI example)
--enable-tool Build the command-line

tool “ethercat” (see
sec. 7.1).

yes

--enable-userlib Build the userspace li-
brary.

yes

--enable-eoe Enable EoE support yes
--enable-cycles Use CPU timestamp

counter. Enable this on
Intel architecture to get
finer timing calculation.

no

--enable-debug-if Create a debug interface
for each master

no

--enable-debug-ring Create a debug ring to
record frames

no

--enable-8139too Build the 8139too driver yes
--with-8139too-kernel 8139too kernel †
--enable-e100 Build the e100 driver no
--with-e100-kernel e100 kernel †
--enable-e1000 Enable e1000 driver no
--with-e1000-kernel e1000 kernel †
--enable-r8169 Enable r8169 driver no
--with-r8169-kernel r8169 kernel †
--enable-generic Build the generic Ether-

net driver (see sec. 4.3).
no

† If this option is not specified, the kernel version to use is extracted from the Linux
kernel sources.
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# cd /opt/etherlab

# cp etc/sysconfig/ethercat /etc/sysconfig/

# ln -s etc/init.d/ethercat /etc/init.d/

# insserv ethercat

Now the sysconfig file /etc/sysconfig/ethercat (see sec. 7.3.2) has to be cus-
tomized. The minimal customization is to set the MASTER0_DEVICE variable to the
MAC address of the Ethernet device to use (or ff:ff:ff:ff:ff:ff to use the first
device offered) and selecting the driver(s) to load via the DEVICE_MODULES variable.

After the basic configuration is done, the master can be started with the below com-
mand:

# /etc/init.d/ethercat start

At this time, the operation of the master can be observed by viewing the Syslog
messages, which should look like the ones below. If EtherCAT slaves are connected
to the master’s EtherCAT device, the activity indicators should begin to flash.

1 EtherCAT: Master driver 1.5.0

2 EtherCAT: 1 master waiting for devices.

3 EtherCAT Intel(R) PRO /1000 Network Driver - version 6.0.60 -k2

4 Copyright (c) 1999 -2005 Intel Corporation.

5 PCI: Found IRQ 12 for device 0000:01:01.0

6 PCI: Sharing IRQ 12 with 0000:00:1d.2

7 PCI: Sharing IRQ 12 with 0000:00:1f.1

8 EtherCAT: Accepting device 00:0E:0C:DA:A2:20 for master 0.

9 EtherCAT: Starting master thread.

10 ec_e1000: ec0: e1000_probe: Intel(R) PRO /1000 Network

11 Connection

12 ec_e1000: ec0: e1000_watchdog_task: NIC Link is Up 100 Mbps

13 Full Duplex

14 EtherCAT: Link state changed to UP.

15 EtherCAT: 7 slave(s) responding.

16 EtherCAT: Slave states: PREOP.

17 EtherCAT: Scanning bus.

18 EtherCAT: Bus scanning completed in 431 ms.

1© – 2© The master module is loading, and one master is initialized.

3© – 8© The EtherCAT-capable e1000 driver is loading. The master accepts the de-
vice with the address 00:0E:0C:DA:A2:20.

9© – 16© The master goes to idle phase, starts its state machine and begins scanning
the bus.
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9.5 Automatic Device Node Creation

The ethercat command-line tool (see sec. 7.1) communicates with the master via a
character device. The corresponding device nodes are created automatically, if the
udev daemon is running. Note, that on some distributions, the udev package is not
installed by default.

The device nodes will be created with mode 0660 and group root by default. If “nor-
mal” users shall have reading access, a udev rule file (for example /etc/udev/rules.d/99-
EtherCAT.rules) has to be created with the following contents:

KERNEL ==" EtherCAT [0-9]*", MODE ="0664"

After the udev rule file is created and the EtherCAT master is restarted with /etc

/init.d/ethercat restart, the device node will be automatically created with the
desired rights:

# ls -l /dev/EtherCAT0

crw -rw -r-- 1 root root 252, 0 2008 -09 -03 16:19 /dev/EtherCAT0

Now, the ethercat tool can be used (see sec. 7.1) even as a non-root user.

If non-root users shall have writing access, the following udev rule can be used instead:

KERNEL ==" EtherCAT [0-9]*", MODE ="0664" , GROUP=" users"
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