
OLYMPIC TIMER
A Stop-Watch Timer to 1/100 Second Resolution

by
Melanie Newman

5 August 2004
melanie@tekpumps.com

A simple demonstrator in MeLabs PICBasic Pro showing an example of
BACKGROUND time-keeping, using TMR1 & Interrupts (and No embedded Assembler!)

Page 1 of 9Melanie’s Olympic Timer

1. What’s an Olympic Timer?

So it’s Athens Olympics time (or it will be next
week at the time of writing), so what better than a
topical Stop-Watch Timer example that can keep
time to 1/100th of a Second. Now you can
challenge the official timekeeping, and when the
Olympics comes to your neighbourhood, you
may not have the regulation-sized swimming
pool, but at least you’ve got the stop-watch...

It’s written 100% in MeLabs PICBasic Pro, with
absolutely NO embedded Assembler Interrupt
Routines, especially for those folks that hate
Assembler but can follow BASIC if it’s simple
enough and they’ve had enough beer.

2. Hardware Circuit

It’s designed around a 28-pin 16F876, however,
can simply be recompiled for any of the 16F87X
series or 18F252 etc, and can be easily ported to
suit any PIC with enough pins that will support
connection of a 1 x 16 LCD (minimum require-
ment), and three push-buttons Yes, it can even
be ported to a 16F628 or such. Because of tim-
ing limitations, this design is NOT suitable for

Serial LCD connection as they are heaps slower
than the usual LCD 4 or 8 wire configuration.

2.1 Hardware Description

LCD1 is connected to the PIC (IC1) in a classic
4-wire data arrangement. The three pushbuttons
are connected to PortB to allow us to dispense
with the need for any pull-up Resistors as we will
be using the PIC’s internal weak pull-up’s. If you
change the circuit and move the Buttons to any
other Port, you will need to add some pull-up’s.
10K should suffice.

The 16F876 needs a Crystal, Resonator or some
kind of clock source (at 4Mhz for this design) to
be connected. You can use a PIC with an inter-
nal oscillator as the software allows for a wide
Calibration adjustment of +/- 36 Seconds in any
one hour in steps as small as 360mS per Hour.

For clairty, the LCD BackLight and Contrast
circuitry has been omitted.

Of course you don’t need the Opto-Isolators
unless you’re going to be making those field
Connections!

R
A

0

R
A

1

R
A

2

R
A

3

R
A

4

R
A

5

R
C

0

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

M
C

LR

V
D

D

R
B

0

R
B

1

R
B

2

R
B

3

R
B

4

R
B

5

R
B

6

R
B

7

V
S

S

V
S

S

O
S

C
1

O
S

C
2

V
S

S
V

D
D

V
O

R
S

R
W

E D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

B
LA

+
B

LK
-

LCD1

C1
100nF

C2
100nF

IC1

X1

+5V

SW1
START/
ADVANCE

SW2
STOP/
RETARD

SW3
RESET/
CALIBRATE

OPTO2 OPTO1

PULSE FROM STARTING PISTOL
CIRCUIT (>10mS)

PULSE FROM FINISH-LINE DETECT
CIRCUIT (>10mS)

4MHz

Page 2 of 9Melanie’s Olympic Timer

3. User Operation

Press the START Button (or pulse received from
remote START circuit) and the Timer runs.

Press the STOP Button (or pulse received from
remote STOP circuit) and the Timer halts.

The LCD display shows Hours, Minutes and
Seconds right down to hundredths of a Second.
If the Timer overflows beyond 99:59:59.99 (ie
100 Hours), then the display will roll-over back to
00:00:00.00 and continue timing with a blinking
ERR (Error) shown on the LCD.

3.1 Timer RESET

When in STOP Mode (ie timing has halted),
pressing the RESET Button momentarily will RE-
SET the Timer back to all zero (00:00:00.00).
The RESET Button is disabled whilst the Timer is
running.

3.2 Calibration Mode

Additionally, when in STOP Mode, Pressing and
HOLDING the RESET Button for at least FIVE
SECONDS will cause the Timer to jump into it’s
SET-UP/CALIBRATION Mode. In this mode you
can adjust the Calibration to either (+) ADVANCE
(speed up) or (-) RETARD (slow down) the Timer
in 1uS steps per 10mS period. This way each
step adjusts 360mS to either ADVANCE or RE-
TARD the timing per Hour. Calibration can be
adjusted +/- 100 steps giving a maximum +/- 36
Second adjustment over an Hour.

When in Calibration Mode, pressing the START
Button will increment the Timer Calibration Value
(to ADVANCE/speed-up the Timer), whilst press-
ing the STOP Button will decrement the Timer
Calibration Value (to RETARD/slow-down the
Timer). When you have adjusted your new Cali-
bration Value, pressing the RESET Button will
SAVE this value and return you back into Timer
Mode.

If whilst in Calibration Mode you don’t press any
Buttons for 20 Seconds or so, then you will
automatically be reverted back to Timer Mode,
WITHOUT any new Calibration Value being
saved.

4.0 Software Description

The software operates around the BACK-
GROUND Operation of TMR1. This 16-bit Timer
ticks every 1uS (with a 4Mhz clock) and causes
an interrupt when it roll-over from $FFFF to
$0000. It doesn’t stop timing when this happens,
it just keeps on running having set TMR1’s flag
(Bit 0 of the PIC’s PIR1 Register). Now this roll-
over and keep-timing is a neat feature that we’re
going to make good use of.

In an ideal world, the moment you get an inter-
rupt flagged, you jump into your Interrupt Service
Routine and do whatever has to be done. In our
case we’re setting an interrupt to occur every
10mS (so that we can time 1/100ths of a sec-
ond). But this is not an ideal world...

In PICBasic, you don’t get to jump into an Inter-
rupt Service Routine (the routine that is specified
by the ON INTERRUPT statement) until the cur-
rent BASIC instruction has completed. The
problem we have is that we don’t know how long
we are having to wait to complete our existing
Basic command before we jump to the Interrupt
Service Routine (ISR). It could be 1uS... or it
could be several mS depending on what we’re
doing. The worst case scenario in our case is
that complex LCDOut statement that is continu-
ally displaying the elapsed time...

LCDOut $FE,$80,DEC2 Hours,":",DEC2
Minutes,":",DEC2 Seconds,".",DEC2 Hundredths

With all those DEC2 statements we could take
several mS to execute before the ISR is actually
jumped to. However, the good news is that it
won’t take as long as 10mS, so that’s the reason
we have fixed our interrupt period at 10mS to
give adequate time for our longest and most time
consuming PICBasic command to complete. Our
main program loop therefore CANNOT contain
any commands or instructions that would take
longer than 10mS, otherwise we would miss the
next interrupt tick.

Knowing that an unknown length of time has
elapsed since the interrupt occurred, and before
we get around to attending to it (due to the inher-
ent latency in the way PICBasic handles inter-
rupts), when eventually we DO get to service the
interrupt, if we stop the Timer and read it’s regis-
ters (TMR1H & TMR1L), it will actually tell us
how much time has elapsed since that last inter-
rupt rolled. We can then use this value and ad-
just the Timer for the next 10mS period...

Page 3 of 9Melanie’s Olympic Timer

For example:

If our 10mS interrupt occurred but we didn’t get
around to servicing it for another 3mS, then when
we do reset the Timer for the next 10mS period,
rather than setting it for 10mS, we set it for 7mS
(10mS minus the 3mS already elapsed).

Now since TMR1 has an accuracy of 1uS (at
4Mhz), we can accurately (or at least reasonably
accurately) dynamically adjust each following
10mS interrupt period taking into account the
previously unknown PICBasic interrupt service
latency. This way we can keep pretty good time.

So 10mS is $2710 (HEX), but since TMR1
counts UP from a given value thrugh $FFFF and
rolls over back to $0000, we need to program
TMR1 with $D8F0 ($0000-$2710) for a 10mS
interrupt. Additionally I have allowed 20uS for all
the hassle of stopping TMR1, reading it’s previ-
ous value, and updating accordingly, so I preset
TMR1 with $D910 as a starting point. Now this is
by no means highly accurate, and is a ‘best
guess’, so I have provided for a Calibration value
of up to 100uS that can be added or subtracted
from this ‘approximate’ 10mS value. This Cali-
bration Value can be set by the user to trim the
Timer exactly against some master reference.
Well since all the best clocks for the last three
hundred years have been provided with a cali-
bration adjustment, I don’t see why I should devi-
ate from an entrenched habit.

This basically describes the ‘core’ of the program
which all happens in the SetTimer subroutine.

The Interrupt Service Routine TickCount addi-
tionally just counts Hundredths of a Second, Sec-
onds, Minutes, Hours and Overflow. The entire
timekeeping function of the program is within the
TickCount ISR. You’ll notice that just because
the Timer isn’t running, I don’t actually stop the
interrupts, TMR1 runs all the time, but all that
happens is that the elapsed time variables are
not updated.

You’ll also notice that I don’t bother servicing in-
terrupts when they are not needed (such as
when you are in Reset Mode or in Set-Up/
Calibration Mode. There’s no need. Further-
more, you save on lots of program space by not
generating the additional code between instruc-
tions for jumping to an Interrupt routine when it is
not needed.

In this case, the only salient parts of the program
that end up with interrupt jumps are the dozen or
so lines of the main program loop.

5.0 Questions

If you have questions, commendations or con-
demnations, don’t email or message me off-list,
please keep them on the forum...

www.picbasic.co.uk/forum

... posting them under the topic thread in the
CODE EXAMPLES section.

6.0 PICBasic Code Listing

Starts on the next page...
Program compiles to 983 words with PBP 2.45.

Page 4 of 9Melanie’s Olympic Timer

 ' Olympic Timer
 ' =============
 ' Melanie Newman
 ' 05/Aug/2004

 ' Topical Program demonstrates use of Interrupt
 ' Driven Background TIMER, to time events down to
 ' one one-hundredth of a Second (1/100 Sec).
 '
 ' Bonus CALIBRATION Feature allows simple adjustments
 ' in 360mS steps per hour. This calibration adjustment
 ' range is limited to +/- 36 seconds per Hour.

 '
 ' This program is for 4MHz clock (1uS Timer Ticks).

 '
 ' PIC Defines
 ' ===========
 '
 ' Change these defines to suit your chosen PIC
 '
 @ DEVICE pic16F876, XT_OSC ' System Clock Options
 @ DEVICE pic16F876, WDT_ON ' Watchdog Timer
 @ DEVICE pic16F876, PWRT_ON ' Power-On Timer
 @ DEVICE pic16F876, BOD_ON ' Brown-Out Detect
 @ DEVICE pic16F876, LVP_OFF ' Low-Voltage Programming
 @ DEVICE pic16F876, CPD_OFF ' Data Memory Code Protect
 @ DEVICE pic16F876, PROTECT_OFF
 ' Program Code Protection
 @ DEVICE pic16F876, WRT_OFF ' Flash Memory Word Enable

 '
 ' Hardware Defines
 ' ================
 '
 ' LCD Display
 ' -----------
 ' Adjust these to suit your chosen LCD pinout
 '
 Define LCD_DREG PORTC ' Port for LCD Data
 Define LCD_DBIT 4 ' Use upper 4 bits of Port
 Define LCD_RSREG PORTC ' Port for RegisterSelect (RS) bit
 Define LCD_RSBIT 0 ' Port Pin for RS bit
 Define LCD_EREG PORTC ' Port for Enable (E) bit
 Define LCD_EBIT 3 ' Port Pin for E bit
 Define LCB_BITS 4 ' Using 4-bit bus
 Define LCD_LINES 2 ' Using 2 line Display
 Define LCD_COMMANDUS 2000
 ' Command Delay (uS)
 Define LCD_DATAUS 50 ' Data Delay (uS)

 '
 ' Control Buttons/Lines
 ' ---------------------
 ButStart var PortB.0 ' Take this pin low momentarily to START timing
 ButStop var PortB.1 ' Take this pin low momentarily to STOP timing
 ButReset var PortB.2 ' Take this pin low momentarily to RESET clock
 '
 ' Hold the RESET Button pressed for at least FIVE seconds
 ' to jump into CALIBRATION Mode

 '
 ' Software Defines
 ' ----------------
 BannerOffset var BYTE ' Variable holding start address of Banner Display
 CounterA var BYTE ' Just a Counter
 CounterB var BYTE ' Just a Counter
 CounterC var BYTE
 DataA var BYTE
 Hours var BYTE
 Hundredths var BYTE
 Minutes var BYTE
 OverflowError var BIT
 RunningFlag var BIT
 Seconds var BYTE
 SetupTimeOut var WORD ' Timeout counter for Calibration/Set-Up Mode
 TMR1Cal var BYTE ' Calibration Value

Page 5 of 9Melanie’s Olympic Timer

 TMR1CalAR var Byte ' Calibration 0=ADVANCE, 1=RETARD
 TMR1RunOn var WORD ' variable holding TMR1 Run-On value

 '
 ' EEPROM Presets
 ' --------------
 Data @0,0 ' Advance/Retard Indicator
 Data 0 ' Calibration Value
 Data "Olympic Timer Powered by MeLabs PICBasic Pro"

 '
 ' Software Constants
 ' ------------------
 TMR1CalMax con 100 ' Maximum adjustment (+/-100uS per 10mS interrupt)
 TMR1Preset con $D910 ' 10mS Timer Reload value, offset by 20uS
 ' to allow for TMR1 Setting Calculations

 '
 ' Start Program
 ' =============

 '
 ' Initialise Processor
 ' --------------------
 TRISA=%00000000
 TRISB=%00000111
 TRISC=%00000000
 ADCON0=%11000000
 ADCON1=%00000111
 OPTION_REG.7=0 ' Enable Pull-Up's
 RunningFlag=0 ' Disable actual Interrupt Time-Keeping
 Pause 1000 ' Pause for LCD to initialise
 '
 ' Silly Intro Banner just for Fun
 ' -------------------------------
 LCDOut $FE,1 ' Clear LCD
 BannerOffset=2:Gosub DisplayBanner
 Pause 2000
 For CounterA=0 to 30
 BannerOffset=2+CounterA
 Gosub DisplayBanner
 Pause 150
 Next CounterA
 Pause 1000
 '
 ' Initialise TMR1 Interrupts
 ' --------------------------
 Gosub SetTimer ' Set the Timer for next 10mS Interrupt
 On Interrupt goto TickCount
 PIE1.0=1 ' Enable TMR1 Interrupts
 INTCON.6=1 ' Enable all unmasked Interrupts
 INTCON.7=1 ' Enable Global Interrupts
 '
 ' ---
 ' Following the above "On Interrupt", no Basic Command
 ' is allowed that takes more than 10mS to execute
 ' otherwise the 10mS Interrupt interval is compromised.
 ' ---
 '
 ' Reset Timer Variables for Start
 ' -------------------------------
DisplayReset:
 LCDOut $FE,1 ' Clear LCD
 Read 0,TMR1CalAR ' Read Calibration Advance/Retard Indicator
 Read 1,TMR1Cal ' Read Calibration Value
 Hundredths=0 ' Reset Timer Counter variables
 Seconds=0
 Minutes=0
 Hours=0
 OverflowError=0
 '
 ' Main Program Loop
 ' =================
 Enable
DisplayLoop:
 If ButStart=0 then RunningFlag=1
 If ButStop=0 then RunningFlag=0
 LCDOut $FE,$80,DEC2 Hours,":",DEC2 Minutes,":",DEC2 Seconds,".",DEC2 Hundredths

Page 6 of 9Melanie’s Olympic Timer

 If OverflowError=1 then
 If Seconds.0=1 then
 LCDOut $FE,$8C,"ERR"
 else
 LCDOut $FE,$8C," "
 endif
 endif
 If RunningFlag=1 then goto DisplayLoop
 If ButReset=1 then goto DisplayLoop
 Disable
 '
 ' Reset Clock
 ' ===========
 ' Momentarily Press the Reset Button for RESET action.
 ' Continue holding the Reset Button for MORE than 5 seconds
 ' to jump into Calibration/Set-Up Mode
 '
ResetClock:
 LCDOut $FE,1,"Reset OK"
 Pause 1000
 Seconds=1
 While Seconds < 5
 Pause 1000
 If ButReset=1 then goto DisplayReset
 Seconds=Seconds+1
 Wend
 '
 ' Calibration Adjustment
 ' ======================
 ' If No Button is Pressed for 20 Seconds, then the program
 ' will automatically exit Calibration/Set-Up Mode WITHOUT saving
 ' any new values.
 '
 SetUpTimeout=0
Calibration:
 LCDOut $FE,1,"Calibrate: "
 While ButReset=0:Wend ' Wait for User to release finger
CalibrationLoop:
 LCDOut $FE,$8B
 If TMR1Cal=0 then
 LCDOut " "
 else
 If TMR1CalAR=0 then
 LCDOut "+"
 else
 LCDOut "-"
 endif
 endif
 LCDOut #TMR1Cal," "
 ' --
 ' Press Start Button to ADVANCE (speed-up) Clock
 ' Press STOP Button to RETARD (slow-down) Clock
 ' Press RESET Button to SAVE new Calibration Setting
 ' --
 ' Remember each Calibration 'tick' will advance or
 ' retard the Timing by 1uS in every 10mS period - that's
 ' 360mS/Hour per setting. Example: A setting of +8 will
 ' SPEED-UP the Timer by 2.88 Seconds (8 x 360mS) in an Hour.
 ' --
 If TMR1CalAR=0 then
 If ButStart=0 then Gosub CalAdvance
 If ButStop=0 then Gosub CalRetard
 else
 If ButStart=0 then Gosub CalRetard
 If ButStop=0 then Gosub CalAdvance
 endif
 If ButReset=0 then
 Write 0,TMR1CalAR
 Write 1,TMR1Cal
 LCDOut $FE,1,"Have a Nice Day"
 Pause 1000
 Goto DisplayReset
 endif
 SetupTimeout=SetupTimeout+1
 If SetupTimeout>200 then goto DisplayReset
 Pause 100
 Goto CalibrationLoop

Page 7 of 9Melanie’s Olympic Timer

 '
 ' Subroutine Increments Calibration Value
 ' ---------------------------------------
CalAdvance:
 SetupTimeout=0
 If TMR1Cal=>TMR1CalMax then
 TMR1Cal=TMR1cALmAX
 TMR1CalAR=TMR1CalAR^1
 else
 TMR1Cal=TMR1Cal+1
 endif
 Return

 '
 ' Subroutine Decrements Calibration Value
 ' ---------------------------------------
CalRetard:
 SetupTimeout=0
 If TMR1Cal=0 then
 TMR1Cal=1
 TMR1CalAR=TMR1CalAR^1
 else
 TMR1Cal=TMR1Cal-1
 endif
 Return

 '
 ' Subroutine Displays Banner Intro
 ' --------------------------------
DisplayBanner:
 CounterC=BannerOffset+15
 LCDOut $FE,$80
 For CounterB=BannerOffset to CounterC
 Read CounterB,DataA
 LCDOut DataA
 Next CounterB
 Return

 '
 ' Subroutine Loads TMR1 values
 ' ============================
SetTimer:
 T1CON.0=0 ' Stop the Clock
 TMR1RunOn.Highbyte=TMR1H ' Load the Run-On (Over-Run) value (if any)
 TMR1RunOn.Lowbyte=TMR1L
 TMR1RunOn=TMR1Preset+TMR1RunOn
 ' Calculate the New (adjusted) value for TMR1
 If TMR1CalAR=0 then ' Calibration ADVANCE (add) or RETARD (subtract)
 TMR1RunOn=TMR1RunOn+TMR1Cal
 else
 TMR1RunOn=TMR1RunOn-TMR1Cal
 endif
 TMR1H=TMR1RunOn.Highbyte ' Save new values to TMR1
 TMR1L=TMR1RunOn.Lowbyte
 T1CON.0=1 ' Restart the Clock
 PIR1.0=0 ' Reset TMR1's Interupt Flag
 Return

 '
 ' Timer Interrupt Handler
 ' =======================
TickCount:
 Gosub SetTimer ' Set the Timer for next 10mS Interrupt
 If RunningFlag=1 then ' If timing actually enabled... then...
 Hundredths=Hundredths+1
 ' Increment 10mS Seconds Counter
 If Hundredths>99 then
 Hundredths=0
 Seconds=Seconds+1
 ' Increment the Seconds
 If Seconds>59 then
 Seconds=0
 Minutes=Minutes+1
 ' Increment the Minutes
 If Minutes>59 then
 Minutes=0
 Hours=Hours+1
 ' Increment the Hours

Page 8 of 9Melanie’s Olympic Timer

 If Hours>99 then
 ' Handle any Overflow
 Hours=0
 OverFlowError=1
 endif
 endif
 endif
 endif
 endif
 Resume

 End

Page 9 of 9Melanie’s Olympic Timer

