
54 August 2011

W
hen NASA put men on the moon, there was no
personal computer for the masses, no USB, no

Ethernet (as we know it), no Internet (as we know it), no
802.15.4, and no ZigBee. In addition to these shortcomings,
the RS-232 standard was in its infancy. Yet, NASA still
managed to get one of the world’s largest rockets, three
men, a command module, a service module, and a lunar
module to make the 500,000 mile round trip. For those of
you born in the 1970s and beyond, the lunar module and
the Saturn V booster only made half of the trip or less.
Apollo 13 was the exception as the lunar module was
retained and used on the return leg to get the astronauts
(along with the crippled service module) safely back to
Earth. Lacking today’s technology, it’s a certainty that NASA
used sophisticated one-off computing devices and radio
equipment to fly manned and unmanned missions in the
early days of the space program. In the spirit of 1969
technology, I’m going to show you how to wirelessly
transfer data between multiple nodes without resorting to
ZigBee, 802.15.4, specialized computers, or one-off radios.

In this installment of Design Cycle, we’re going to use a
modular approach to construct some embedded data radio
hardware. Once the hardware comes online, we’ll put on

our software hats and
spin some code. When
we finish the coding,
we’ll dump the bits into
the hardware, put on our
pointy hat that is
decorated with stars and
moons, and observe
data magically move
from one radio platform
to the other.

GETTING ON THE AIR

In this case, AIR is short for Anaren Integrated Radio.
The 2.4 GHz AIR modules measure in at 9 x 12 x 2.5 mm.
The sub-postal stamp-sized AIR module you see in Photo

1 houses an integrated crystal, a voltage regulator, and all
of the associated RF circuitry necessary to support its
CC2500 transceiver core. In idle mode, the AIR module
draws a paltry 1.5 mA. When sleeping, the 2.4 GHz
module current requirement drops to a nearly nonexistent
400 nA. Anywhere from 13.3 mA to 19.6 mA current
draw is typical in receive mode, and at maximum transmit
power only 21.5 mA is consumed. This level of power
consumption allows the AIR module to fit nicely into very
low power telemetry and embedded control applications.

The 2.4 GHz A2500R24A AIR module pictured in
Photo 1 is equipped with an integral antenna. If your
module is to be imprisoned in a metal enclosure, you’ll
need the A2500R24C variant which is fitted with a
compact U.FL antenna connector. This month, we will
work exclusively with the A2500R24A module. So, from
now on the A2500R24A will be referred to simply as the
AIR module. The AIR module is documented extensively
on the Anaren website. So, there’s no need to rehash in
this text the information you can easily access online. The
main goal this month is to design, assemble, and code a
microcontroller-based support system for the AIR module.

AIR SUPPORT

Just because NASA sent men to the moon sans USB
doesn’t mean that we can’t employ the services of USB in
our AIR design process. In the firmware debug phase of the
design process, we’ll use USB as a power source and as a

stand-in for RS-232. That implies that our microcontroller
of choice must be USB capable. The next design point
our microcontroller must meet concerns the compiler
we will use to forge the AIR module firmware driver. We
will need to select a compiler that supports USB. Access

DESIGN
n BY FRED EADY

CYCLETHE
ADVANCED TECHNIQUES FOR DESIGN ENGINEERS

www.nutsvolts.com/index.php?/magazine/article/august2011_DesignCycle

GIVE YOUR BITS SOME AIR
If you think that you need ZigBee or 802.15.4 to move small chunks of data with a low
power data radio, you are absolutely correct. If you think that you don’t need ZigBee or
802.15.4 to move small chunks of data with a low power radio, you are absolutely correct.

ZigBee and 802.15.4 are wireless data communication standards that require packet-
descriptive information to be sent along with the packet’s payload data. If you only need
to send a couple of bytes in a peer-to-peer or multicast environment, you really don’t need
(or want) the network overhead that comes with an official ZigBee stack or 802.15.4
network.

n PHOTO 1. The ultra-
compact size and low power
consumption of the AIR
module make it an ideal
radio platform for low power
wireless embedded projects.

to the AIR module’s internal registers is enabled via a four-
wire SPI portal. The SPI protocol can be emulated with user-
written bit bang routines. So, our compiler need doesn’t
built-in SPI functionality, but it would be nice if it did. We
don’t have to look far for a suitable microcontroller. The
PIC18F47J53 natively supports USB and offers an on-chip
hardware-based SPI engine. We’ll be storing tables in Flash
and data in buffers carved from SRAM. The PIC18F47J53
has ample memory resources that we can call on. On the
power plane, the PIC18F47J53 is a perfect fit for the AIR
module as both it and the PIC18F47J53 operate on a 3.3
volt power rail. The equality at the power plane level
eliminates the need for logic level shifting of the
PIC18F47J53’s SPI portal and I/O pins. Thus, we can
directly connect the I/O subsystems of the PIC18F47J53
and AIR module. I would like to use the CCS C compiler as
it runs under the influence of MPLAB and allows the use of
Microchip’s PICkit3 as a debugger and programmer. As it
turns out, the CCS C compiler also fully supports the
PIC18F47J53’s USB and SPI engines.

The PIC18F47J53 design is chronicled in Schematic 1

and realized in Photo 2. A 32.768 kHz crystal is included in
the PIC18F47J53 design to enable the PIC’s internal RTCC
(Real Time Clock Calendar). The option to employ the
PIC18F47J53’s analog-to-digital converter (ADC) is available
by way of the free PORTA I/O pins. I’ve included some
optional debug/status LEDs on the PORTE pins. If you need
the PORTE pins as additional analog-to-digital inputs, you
can move LED1-LED3 to other available PIC18F47J53 I/O

pins or eliminate them all together. The PIC’s USB portal
doubles as a power source and a USB CDC
(Communications Device Class) device. A companion CCS
USB driver on the PC side sets up a virtual COM port that
allows the PIC18F47J53 to communicate with a terminal
emulator using its embedded USB portal.

THE AIR PLANE

Now that we have the microcontroller host portion of
the project under control, we can begin work on the AIR
frame. The AIR module grinning at you in Photo 1 is an
SMT device that is more suited to projects that have been
tested and finalized. The Anaren engineers that wear those
pointy hats brewed up yet another AIR module variant. The
A2500R24A-EM1 was originally conceived to allow AIR
modules to ride on Texas Instruments SmartRF evaluation
boards. We’re going to hijack the A2500R24A-EM1 tied up
in Photo 3 and put it on another plane. With a little help
from our friends at SAMTEC and ExpressPCB, I whipped up
the AIR PLANE which is basking in the light of Photo 4. The
AIR PLANE is a hardware conversion tool that pulls the
SAMTEC-based 40-pin A2500R24A-EM1 interface into eight
pins that are placed on convenient 0.1 inch centers.
Contained within the AIR PLANE’s eight-pin interface are
the four-wire SPI portal, the AIR module GDO0 and GDO2
I/O pins, and power and ground points. The AIR PLANE’s
converted interface is everything we need to fully access the
AIR module’s configuration and data registers.

August 2011 55

R1
10K 3V3

C6
20pFLED1

3V3

LED3

C9
12pF

CSn

GDO0

MOSI

3V3

EDTP AIR PLANE

3V3

BLED

BLUE LED

MOSI

G
D

O
0

CSn

R5
470

3V3

C4
100nF

EXT-5V0

1
2

VBUS

3V3

C11
4.7uF

LED2

3V3

R4
470

P1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

GND
NC
NC
NC
NC
NC
NC
NC
NC
GDO0
NC
GDO2
NC
CSn
NC
SCLK
NC
SI
GND
SO/GDO1

C10
4.7uF

LED2

BLUE LED

C2
100nF

C8
12pF

C5
100nF

VBUS

GDO2

C7
20pF

Y1 12 MHz

C3
100nF

C1
10uF

B
L
E

D

ICSP

1
2
3
4
5
6

LED3

U1

PIC18F47J53

1
2
3
4
5
6
7
8
9

10
11

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

23
24
25
26
27
28
29
30
31
32
33

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

RC7/RP18
RD4/RP21
RD5/RP22
RD6/RP23
RD7/RP24
VSS1
VDD1
RB0/RP3
RB1/RP4
RB2/RP5
RB3/RP6

N
C

N
C

R
B

4
/R

P
7

R
B

5
/R

P
8

R
B

6
/R

P
9

R
B

7
/R

P
1

0
M

C
L
R

R
A

0
/R

P
0

/A
N

0
R

A
1
/R

P
1

R
A

2
R

A
3

VDDCORE/VCAP
RA5/RP2

RE0
RE1
RE2

VDD2
VSS2
OSC1
OSC2

RC0/RP11
NC

N
C

R
C

1
/R

P
1
2

R
C

2
/R

P
1
3

V
U

S
B

R
D

0
R

D
1

R
D

2
/R

P
1
9

R
D

3
/R

P
2
0

R
C

4
/D

-
R

C
5
/D

+
R

C
6
/R

P
1
7

Y2 32.768 KHz

LED2

R2
100

M
IS

O

3V3

R6
470

MINI-B USB RECPT

1
2
3
4
5
6

1
2
3
4
5
6

S
C

K

3V3

R3
470

P2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

NC
GND
NC
GND
NC
GND
VDD
GND
VDD
GND
NC
GND
NC
GND
NC
GND
NC
NC
NC
DD_DIR

MISO

SCLK

LED1

BLUE LED

GDO2

BLED

3V3

3V3

LED1

LED3

BLUE LEDVR1 TC1262-3.3

1 3

2

IN OUT

C
O

M

n SCHEMATIC 1. Simple design,
powerful application.

As you can see in Photo 5, all of the modular hardware
components are mounted in the 0.1 inch pitch fiberglass
grid of an EDTP plated-through perf board. The short ends
of standard 0.1 inch pitch male headers are soldered on the
component side of the PIC18F47J53 module. The extended
portions of the male headers are long enough to pass
through the perf board and act as wire wrap posts. I chose
to use a female header to socket the AIR PLANE and its
A2500R24A-EM1 evaluation board cargo.

GETTING AIRBORNE

I applied power to the collaboration of modules
assembled in Photo 5 and did not release any magic smoke.
So, we’re ready to put down a firmware foundation that will
allow us to take our AIR module and supporting equipment
down the runway, and ultimately go AIRborne. To those RF
types that wear the pointy witch hats, the AIR module is a
collection of well-placed coils and capacitors that transfers
data by disrupting small portions of the Earth’s magnetic
field. To a hardware type, the AIR module is a tiny building
block that sits on a particular layout of printed circuit board
(PCB) pads. To a programmer, the AIR module is a logical
collection of registers and FIFO (First In First Out) buffers.
All of the RF plumbing has been done for us by the folks at

Anaren. We took care of the AIR hardware build ourselves
with the fabrication, assembly, and integration of the
PIC18F47J53 and AIR PLANE modules. There’s no one else
here to fly this thing but us. So, let’s start flipping software
switches and see if we can’t get this baby on the AIR.

A SOFTWARE RADIO

My very first serious radio was a Knight Kit Ocean
Hopper shortwave radio (http://nostalgickitscentral.com/
allied/products/knight_radio.html). I recall the various coils
that could be plugged in for listening in at different
frequencies. The in-band tuning was done mechanically via
a dial that was attached to a large variable capacitor. The
only software involved in tuning the Ocean Hopper were
my — at the time — itty bitty little fingers.

A couple of HC49-packaged microcontroller crystals
would drown the tiny AIR module. Obviously, as far as the
AIR module is concerned, there’s not enough real estate
available for any mechanical RF controls. Thus, the AIR
module is a fly-by-wire device. Registers and the values
contained within them replace the variable capacitors and
frequency selection coils. In the case of the AIR module, all
of its RF and data handling parameters are controlled by the
contents of the 47 registers enumerated in Listing 1.

After staring a hole into the front panel of my Ocean
Hopper, I longed for some visual feedback on the signals I
was receiving in my headphones. Back in the day, the more
sophisticated shortwave receivers came equipped with
signal strength meters. Although a mechanical meter could
be electrically adapted to the AIR module, an external
mechanical or electronic metering device would be overkill
as the AIR module has a built-in set of digital meters in the
guise of status registers. The set of digital status meters are
contained within the register set you see in
Listing 2.

Listing 2 also exposes the AIR module’s PATABLE and
FIFO registers.
The PATABLE
consists of eight
bytes and is
instrumental in
dialing in the AIR
module’s transmit
output power.
Our PATABLE
setting looks like
this:

//*********
//* AIR
//*PATABLE SET
//*FOR 0dBm
//*********
const unsigned
int8 AIR_PA_
TABLE[8]=
{

n PHOTO 4. The AIR PLANE eliminates
the need to permanently mount an AIR
module in the hardware/firmware development
phase of the design cycle.

n PHOTO 3. The A2500R24A-EM1 is the
marriage of an A2500R24A AIR module and
a Texas Instruments-inspired daughterboard.

n PHOTO 2. The PIC18F47J53 hardware shown here is
designed to drive an AIR module in stand-alone mode using
battery power, or to control an AIR module under the
influence of a PC’s USB portal.

56 August 2011

August 2011 57

0xFE,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

The transmit FIFO and receive FIFO handle the module’s
outgoing and incoming data, respectively. The AIR module
manipulates the configuration register values and FIFO data
using a state machine that runs within its CC2500 core. The
host microcontroller can control the movement between
states by issuing strobes. Strobes are really commands such
as start receiving (SRX) or start transmitting (STX). The AIR
module’s available command strobes are contained within
Listing 3. The AIR module’s registers, FIFOs, and command
strobes are all laid out for us. It’s up to us to manipulate
these resources in such a way as to cause the transmission
and reception of digital data. So, let’s get with it.

AIR TOOLS

We must initiate an AIR module RESET before any
register manipulation can take place:

//***
//* RESET AIR
//***
void reset_air(void)
{

DISABLE_SPI;
output_bit(SCLK,1);
output_bit(MOSI,1);
output_bit(CSN,1);
delay_ms(1);
output_bit(CSN,0);
delay_ms(1);
output_bit(CSN,1);
delay_ms(1);
output_bit(CSN,0);
while(input(MISO));
ENABLE_SPI;
data_out = AIR_SRES;
write_data;
DISABLE_SPI;
while(input(MISO));
output_bit(MOSI,0);
output_bit(SCLK,0);
output_bit(CSN,1);
ENABLE_SPI;

}

The first command strobe (AIR_SRES) is executed
within the AIR module RESET function. Note that the SPI
portal is alternately enabled and disabled in the reset_air

function. The reason for this is that we must wait for MISO
to fall logically low before engaging the AIR module via its
SPI portal. Following the assertion of the CSn signal by the
host microcontroller, the AIR module forces its SO pin
logically low to indicate that its crystal oscillator is running.
This logic low state on the AIR module’s SO pin is
identified as the CHIP_RDYn signal. You’ll see this wait for
CHIP_RDYn sequence often in the AIR support functions
we will create. In that there are default values loaded into
the AIR module’s registers after reset, the logical starting
point in our firmware generation process is to write a
function to read the AIR module registers:

//***
//* MACROS
//***

#define NOP delay_cycles(1)
#define LED_ON(led) output_bit(led,0)
#define LED_OFF(led) output_bit(led,1)
#define enable_air output_bit(CSN,0)
#define disable_air output_bit(CSN,1)
#define xfer_data data_in =
spi_read(data_out)
#define read_data data_in = spi_read(0)
#define write_data spi_write(data_out)
#define ENABLE_SPI setup_spi(SPI_MASTER|SPI_

L_TO_H|SPI_XMIT_L_TO_H|SPI_CLK_DIV_16);
#define DISABLE_SPI setup_spi(SPI_DISABLED)
//***
//* READ AIR REGISTER
//***
void read_air_reg(unsigned int8 baddr)
{

DISABLE_SPI;
enable_air;

while(input(MISO));
ENABLE_SPI;
data_out = baddr | 0x80;
write_data;
if(spi_data_is_in())
{

read_data;
}
disable_air;

}

I’ve posted the macro definitions here for clarity. The
read_air_reg function disables the microcontroller’s SPI
portal to allow the microcontroller’s MISO pin to act as a
digital input to detect the CHIP_RDYn signal. Once MISO
goes low, the SPI portal is reactivated, the desired register
address with the read bit enabled (baddr | 0x80) is
transferred to the AIR module, and the contents of the
addressed register are returned to the microcontroller.
Now that we have a method to read the AIR module
registers, we can build a write function:

//***
//* WRITE AIR REGISTER
//***
void write_air_reg(unsigned int8 baddr,unsigned
int8 bdata)
{

DISABLE_SPI;
enable_air;
while(input(MISO));
ENABLE_SPI;
data_out = baddr;
xfer_data;

status_byte = data_in;
data_out = bdata;
xfer_data;
disable_air;

}

Note that along with writing the data, we simultaneously
obtain a status byte from the AIR module. Anytime a
header, data byte, or command strobe is sent on the SPI

n PHOTO 5.The PIC18F47J53 module, the AIR PLANE, and
its evaluation board cargo are all fitted on an EDTP plated-

through perf board. The electrical connections are made
with point-to-point solder techniques and wire wrap.

portal a status byte is returned by the AIR module on it’s
SO line. The layout of the status byte is laid out in Figure 1.
Let’s try out our new write_air_reg function:

init();
write_air_reg(AIR_PTEST,0x7F);

The init function has configured the PIC18F47J53 hardware,
reset the AIR module, loaded the AIR module configuration
registers and PATABLE, and placed the AIR module in the
IDLE state. The transmit and receive FIFOs are also cleared
during the initialization. The write to the AIR_PTEST register
should return a status byte informing us that the
CHIP_RDYn signal is logically low, the current AIR module
state is IDLE, and there are more than 15 bytes free in the
FIFOs. Screenshot 1 captures the contents of an MPLAB
Watch window that contains the returned status byte value.
Using Figure 1 to decode the value of the status byte
verifies my predictions. We need not change the value of a
register or issue a meaningful command strobe to obtain a
status byte. We can also trigger the issuance of a status byte
by issuing a NOP (No Operation) command strobe:

init();
send_strobe(AIR_SNOP);

Sending command strobes is also essential to getting
on the AIR. Just like the read and write register functions,

there’s no rocket science behind the send_strobe function.
Here’s what the send_strobe function code looks like:

//***
//* SEND AIR STROBE
//***
void send_strobe(unsigned int8 bstrobe)
{

DISABLE_SPI;
enable_air;

while(input(MISO));
ENABLE_SPI;
data_out = bstrobe;
xfer_data;
status_byte = data_in;
disable_air;

}

The xfer_data macro — which gleans a status byte — is
based on a built-in SPI function of the CCS C compiler.

AIR TRANSIT

I think we’re ready to fly some bits around. Let’s code
up a transmitter. Here’s what needs to happen:

#ifdef TRANSMITTER
if(++usbcntr > 40000)
{

AIR_idle_mode;
AIR_clear_tx_fifo;
build_tx_pkt(10,0x22);
send_pkt(payloadlen + 1);

58 August 2011

//***
//* AIR CONFIGURATION REGISTERS
//***
#define AIR_IOCFG2 0x00 // GDO2 output pin

// configuration
#define AIR_IOCFG1 0x01 // GDO1 output pin

// configuration
#define AIR_IOCFG0 0x02 // GDO0 output pin

// configuration
#define AIR_FIFOTHR 0x03 // RX FIFO and TX

// FIFO thresholds
#define AIR_SYNC1 0x04 // Sync word, high

// byte
#define AIR_SYNC0 0x05 // Sync word, low

// byte
#define AIR_PKTLEN 0x06 // Packet length
#define AIR_PKTCTRL1 0x07 // Packet automation

// control
#define AIR_PKTCTRL0 0x08 // Packet automation

// control
#define AIR_ADDR 0x09 // Device address
#define AIR_CHANNR 0x0A // Channel number
#define AIR_FSCTRL1 0x0B // Frequency

// synthesizer control
#define AIR_FSCTRL0 0x0C // Frequency

// synthesizer control
#define AIR_FREQ2 0x0D // Frequency control

// word, high byte
#define AIR_FREQ1 0x0E // Frequency control

// word, middle byte
#define AIR_FREQ0 0x0F // Frequency control

// word, low byte
#define AIR_MDMCFG4 0x10 // Modem

// configuration
#define AIR_MDMCFG3 0x11 // Modem

// configuration
#define AIR_MDMCFG2 0x12 // Modem

// configuration
#define AIR_MDMCFG1 0x13 // Modem

// configuration
#define AIR_MDMCFG0 0x14 // Modem

// configuration
#define AIR_DEVIATN 0x15 // Modem deviation

// setting
#define AIR_MCSM2 0x16 // Main Radio Cntrl

// State Machine config
#define AIR_MCSM1 0x17 // Main Radio Cntrl

// State Machine config

#define AIR_MCSM0 0x18 // Main Radio Cntrl
// State Machine config

#define AIR_FOCCFG 0x19 // Frequency Offset
// Compensation config

#define AIR_BSCFG 0x1A // Bit
// Synchronization configuration

#define AIR_AGCCTRL2 0x1B // AGC control
#define AIR_AGCCTRL1 0x1C // AGC control
#define AIR_AGCCTRL0 0x1D // AGC control
#define AIR_WOREVT1 0x1E // High byte Event 0

// timeout
#define AIR_WOREVT0 0x1F // Low byte Event 0

// timeout
#define AIR_WORCTRL 0x20 // Wake On Radio

// control
#define AIR_FREND1 0x21 // Front end RX

// configuration
#define AIR_FREND0 0x22 // Front end TX

// configuration
#define AIR_FSCAL3 0x23 // Frequency

// synthesizer calibration
#define AIR_FSCAL2 0x24 // Frequency

// synthesizer calibration
#define AIR_FSCAL1 0x25 // Frequency

// synthesizer calibration
#define AIR_FSCAL0 0x26 // Frequency

// synthesizer calibration
#define AIR_RCCTRL1 0x27 // RC oscillator

// configuration
#define AIR_RCCTRL0 0x28 // RC oscillator

// configuration
#define AIR_FSTEST 0x29 // Frequency

// synthesizer cal control
#define AIR_PTEST 0x2A // Production test
#define AIR_AGCTEST 0x2B // AGC test
#define AIR_TEST2 0x2C // Various test

// settings
#define AIR_TEST1 0x2D // Various test

// settings
#define AIR_TEST0 0x2E // Various test

// settings

n LISTING 1.These 47 registers can be considered as
the AIR module's knobs. All of the AIR module's RF
and data handling parameters are controlled by the

values within these registers.

output_toggle(BLED);
usbcntr = 0;

}
#endif

The init function is identical for both the transmitter and
receiver, and will not complete until the PIC18F47J53 is
enumerated and goes online with the PC’s USB portal. The
CCS C compiler’s usbtask function must be called
periodically; the usbtask function call is included in the
endless do loop that makes up the main function. I
arbitrarily chose the name usbcntr for the 16-bit memory
location that holds the number of cycles through the
transmitter routine. The usbcntr value determines when to
blink the blue LED. The self-explanatory AIR_idle_mode and
AIR_clear_tx_fifo are command strobes in the form of
macros. With the AIR module idling and the transmit FIFO
cleared, we have indicated that we want to build a packet
that is 10 bytes in length and send it to a receiver with the
address of 0x22. To do this, some ground work must be laid
first. In the init function, we loaded the AIR module’s
configuration registers with a modified template of values
obtained from the Anaren website. The original set of AIR
module configuration values called original-config-values.h is
part of the article download package. If you compare the
original set of configuration values with our modified
configuration values in air_rf_settings.h, you’ll see that we
modified the AIR_PKTCTRL1 register. AIR_PKTCTRL1’s
original value was 0x04 which appends the RSSI and LQI

bytes to the end of our packet. Changing the
AIR_PKTCTRL1 value to 0x07 adds a packet address check
to the packet’s appended RSSI and LQI bytes. Now that
address checking is in effect, we need to specify a receiver
address in the AIR_ADDR configuration register. According
to our build_tx_pkt function, the receiver’s address should
be 0x22 and that is reflected in the receiver’s
air_rf_settings.h file. Let’s flesh out the build_tx_pkt function:

//***
//* BUILD TX PACKET
//***
void build_tx_pkt(unsigned int8 len,unsigned
int8 addr)
{

unsigned int8 i;
payloadlen = len;

tx_buf[0] = payloadlen;
tx_buf[1] = addr;
for(i=2;i<payloadlen+1;++i)
{

tx_buf[i] = i;
}

}

In variable length packet mode (AIR_PKCTRL least
significant 2 bits = 01), the length of the packet is the first
byte in the packet, and the address byte is next followed by
the data. Once the packet is assembled, we can send it:

//***
//* SEND PACKET MANUAL

August 2011 59

//***
//* AIR STATUS REGISTERS
//***
#define AIR_PARTNUM 0x30 // Part number
#define AIR_VERSION 0x31 // Current version

// number
#define AIR_FREQEST 0x32 // Frequency offset

// estimate
#define AIR_LQI 0x33 // Demodulator

// estimate for link quality
#define AIR_RSSI 0x34 // Received signal

// strength indication
#define AIR_MARCSTATE0x35 // Control state

// machine state
#define AIR_WORTIME1 0x36 // High byte of WOR

// timer
#define AIR_WORTIME0 0x37 // Low byte of WOR

// timer
#define AIR_PKTSTATUS0x38 // Current GDOx

// status and packet status
#define AIR_VCO_VC_DAC 0x39 // Current

// setting from PLL cal module
#define AIR_TXBYTES 0x3A // Underflow and #

// of bytes in TXFIFO
#define AIR_RXBYTES 0x3B // Overflow and # of

// bytes in RXFIFO
//***
//* AIR PATABLE REGISTER
//***
#define PATABLE 0x3E
//***
//* AIR FIFO REGISTER
//***
#define TXFIFO 0x3F
#define RXFIFO 0x3F

n LISTING 2. The AIR module status registers contain
information on everything from the version of the core to

the number of bytes in the receive and transmit queues.
Oh yeah, the signal strength (RSSI) can also be found in

the status register area.

//***
//* AIR STROBES
//***
#define AIR_SRES 0x30 // Reset chip.
#define AIR_SFSTXON 0x31 // Enable and

// calibrate frequency synthesizer (if
// MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where
// only the synthesizer is running (for
// quick RX / TX turnaround).

#define AIR_SXOFF 0x32 // Turn off crystal
// oscillator.

#define AIR_SCAL 0x33 // Calibrate
// frequency synthesizer and turn it
// off(enables quick start).

#define AIR_SRX 0x34 // Enable RX.
// Perform calibration first if coming
// from IDLE and MCSM0.FS_AUTOCAL=1.

#define AIR_STX 0x35 // In IDLE state:
// Enable TX. Perform calibration first
// if MCSM0.FS_AUTOCAL=1. If in RX state
// and CCA is enabled: Only go to TX if
// channel is clear.

#define AIR_SIDLE 0x36 // Exit RX / TX,
// turn off frequency synthesizer and
// exit Wake-On-Radio mode if applicable.

#define AIR_SAFC 0x37 // Perform AFC
// adjustment of the frequency
// synthesizer

#define AIR_SWOR 0x38 // Start automatic
// RX polling sequence (Wake-on-Radio)

#define AIR_SPWD 0x39 // Enter power down
// mode when CSn goes high.

#define AIR_SFRX 0x3A // Flush the RX FIFO
// buffer.

#define AIR_SFTX 0x3B // Flush the TX FIFO
// buffer.

#define AIR_SWORRST 0x3C // Reset real time
// clock.

#define AIR_SNOP 0x3D // No operation. May
// be used to pad strobe commands to two
// bytes for simpler software.

n LISTING 3. Command strobes are issued by the host
microcontroller to traverse the AIR module's internal

state machine.

//***
void send_pkt(unsigned int8 pktsize)
{

unsigned int8 i;

DISABLE_SPI;
enable_air;
while(input(MISO));
ENABLE_SPI;
data_out = TXFIFO + 0x40;
write_data;
for(i=0;i<pktsize;i++)
{

spi_write(tx_buf[i]);

}
disable_air;
AIR_transmit_mode;
while(input(GDO0)==0);
while(input(GDO0));
AIR_idle_mode;

}

The 0x40 added to the TXFIFO address allows us to burst
write to the transmit FIFO. Burst writing/reading allows us
to drop the CSn signal logically low and continually stream
data until we raise the CSn signal which signals the end of
the data burst. We can apply the same TXFIFO bursting

logic to RXFIFO bursting. Take
a look at the code that makes
up a bursting RXFIFO read:

//************************
//* READ RXFIFO
//************************

void read_rxfifo(unsigned
int8 *buf,unsigned int8
len)
{

unsigned int i;
DISABLE_SPI;
enable_air;

while(input(MISO));
ENABLE_SPI;
data_out = RXFIFO | 0xC0;
write_data;
for(i = 0;i < len;i++)
{

buf[i] = spi_read(0);
}
disable_air;
}

The 0xC0 that is ORed to the RXFIFO address tells
the module to burst the read operation. Data is
streamed from the RXFIFO to the PIC18F47J53
until the CSn line is returned logically high. Here’s
my idea of how to receive data sent by our
TRANSMITTER code:

#ifdef RECEIVER
AIR_receive_mode; //enter receive mode
while(input(GDO0)==0);
while(input(GDO0));
AIR_idle_mode; //packet received

read_air_reg(RXFIFO);//get length byte
rx_len = data_in;
read_rxfifo(rx_buf,rx_len);
//read address byte and data
read_rxfifo(rf_stats,2);
//read LQI and RSSI
for(i=0;i<rx_len;i++)
{

printf(usb_cdc_putc, “%X
\r\n”,rx_buf[i]);

}
output_toggle(BLED);

#endif

After entering receive mode and receiving a packet —
which is signaled by the toggling of the AIR module’s
GDO0 I/O pin — we place the AIR module in IDLE mode
and read the length byte of the received packet. The
amount of data specified by the length byte is burst read
into the receive buffer rx_buf. The appended RSSI and
LQI bytes are bursted into the rf_stats array. If all went as
planned, we should be able to transmit the contents of the
receive buffer to a HyperTerminal session via the
PIC18F47J53’s USB portal.

A BREATH OF FRESH AIR

I’ll leave you with Screenshot 2. The AIR Tools source
code is included in its entirety within the download
package that accompanies this edition of Design Cycle. I’ll
also include the AIR PLANE ExpressPCB layout file for
those of you that want to scratch-build your own AIR craft.
You’re allowed to wear that pointy hat adorned with stars
and moons as AIR is now in your Design Cycle. NV

n FIGURE 1. The
data contained
within the status
byte comes in
handy when you
need to quickly
assess the status
of the state
machine and
FIFOs.

n SCREENSHOT 1. A
read operation returns
the number of free bytes
in the receive FIFO.
Conversely, a write
operation returns the
number of free bytes in
the transmit FIFO. When
the FIFO_BYTES_
AVAILABLE is equal to
15, 15 or more bytes are
available.

60 August 2011

Anaren
AIR A2500R24x Modules

AIR A2500R24A-EM1
www.anaren.com

Custom Computer Services
CCS C Compiler

www.ccsinfo.com

Microchip
PIC18F47J53 Microcontroller

www.microchip.com

n SCREENSHOT 2.A 10-byte
packet delivered as ordered to
the receiver at address 0x22.
What you don't see here is the
length byte we read and didn't
write to the receive buffer, and
a CRC at the end of the packet.

